Round 7 Groundwater Monitoring Report

Defense Reutilization and Marketing Office

Naval Submarine Base New London

Groton, Connecticut

Northern Division
Naval Facilities Engineering Command
Contract Number N62472-90-D-1298
Contract Task Order 0267

April 2000

ROUND 7 GROUNDWATER MONITORING REPORT FOR DEFENSE REUTILIZATION AND MARKETING OFFICE

NAVAL SUBMARINE BASE - NEW LONDON GROTON, CONNECTICUT

COMPREHENSIVE LONG-TERM ENVIRONMENTAL ACTION NAVY (CLEAN) CONTRACT

Submitted to:
Northern Division
Environmental Branch Code 18
Naval Facilities Engineering Command
10 Industrial Highway, Mail Stop #82
Lester, Pennsylvania 19113-2090

Submitted by:
Tetra Tech NUS, Inc.
600 Clark Avenue, Suite 3
King of Prussia, Pennsylvania 19406-1433

CONTRACT NUMBER N62472-90-D-1298 CONTRACT TASK ORDER 0267

APRIL 2000

PREPARED BY:

APPROVED BY:

MARK L. MENGEL
PROJECT MANAGER
TETRA TECH NUS, INC
PITTSBURGH, PENNSYLVANIA

JOHN J. TREPANOWSKI, P.E., PROGRAM MANAGER

TETRA TECH NUS, INC

KING OF PRUSSIA, PENNSYLVANIA

TABLE OF CONTENTS

SECTION	PAGE NO.
1.0 INTROE 1.1 1.1.1 1.1.2 1.1.3 1.2 1.3	DUCTION 1-1 BACKGROUND INFORMATION 1-1 Base Description 1-1 Site Description and History 1-1 Previous Investigations 1-2 SCOPE AND OBJECTIVE 1-5 REPORT ORGANIZATION 1-5
2.0 FIELD II 2.1 2.2 2.3	WYESTIGATION ACTIVITIES
3.0 MONITO	DRING RESULTS
APPENDICES A B C D E F G	FIELD ACTIVITIES LOG BOOK TIDE TABLES GROUNDWATER LEVEL MEASUREMENT SHEET MONITORING INSTRUMENT CALIBRATION LOGS GROUNDWATER SAMPLE LOGHSEETS AND LOW-FLOW PURGE DATA SHEETS CHAIN OF CUSTODY RECORDS DATA VALIDATION LETTERS AND LABORATORY DATA SHEETS

TABLES

NUMB	<u>ER</u>	E	PAGE NO.
2-1	Groundwater Level Measurements and Elevations		2-3
3-1	Groundwater Level Measurements and ElevationsRound 7 Analytical Results Summary		3-3

FIGURES

NUMI	<u>BER</u>	PAGE NO.
1-1	Site Map	1-7
	Site Map	1-8
1-2	DHMO Site Plan	
2-1	Monitoring Well Locations	
2-2	DRMO Site Plan	2-7
2-3	High Tide Potentiometric Surface Man	
	Positive COC Detection	3-5
3-1	Positive COC Detection	

1.0 INTRODUCTION

This Round 7 Groundwater Monitoring Report for the Defense Reutilization and Marketing Office (DRMO) at the Naval Submarine Base New London (NSB-NLON) in Groton, Connecticut was prepared for the U.S. Department of the Navy (Navy) by Tetra Tech NUS, Inc. (TtNUS) under the Comprehensive Long-Term Environmental Action Navy (CLEAN), Contract Number N62472-90-D-1298, Contract Task Order (CTO) 0267.

This document has been prepared in accordance with the Navy Installation Restoration Laboratory Quality Assurance Guide (Interim Guidance) of the Naval Facilities Engineering Service Center, (NFESC, February 1996).

1.1 BACKGROUND INFORMATION

1.1.1 Base Description

NSB-NLON is located in southeastern Connecticut in the Towns of Ledyard and Groton. It encompasses approximately 576 acres and lies on the east bank of the Thames River, approximately 6 miles north of Long Island Sound. NSB-NLON is bounded to the east by Connecticut Route 12, to the south by Crystal Lake Road, and to the west by the Thames River. The northern border is a low, east-southeast trending ridge extending from the Thames River to Baldwin Hill.

NSB-NLON currently provides base command for naval submarine activities in the Atlantic Ocean. It also provides housing for Navy personnel and their families and supports submarine training facilities, military offices, medical facilities, and facilities for the submarine maintenance, repair, and overhaul.

1.1.2 <u>Site Description and History</u>

The DRMO is adjacent to the Thames River in the northwestern section of NSB-NLON. The DRMO is the storage and collection facility for items to be sold at auctions and sales held periodically throughout the year. Figure 1-1 shows the site location within NSB-NLON, and Figure 1-2 shows the general site plan.

The DRMO was used as a major base landfill and burning ground from 1950 to 1969. The materials burned and landfilled included construction materials, combustible scrap, and other non-salvageable waste items. These materials were burned on the Thames River shoreline adjacent to the current location of the DRMO. The residue was pushed to the shoreline and partially covered.

Atlantic Environmental Service, Inc. (Atlantic) personnel reviewed archived aerial photographs of the DRMO areas part of the Phase I Remedial Investigation (RI) (Atlantic, 1992). The 1934 photographs show fill in the southern portion of the site. Fill for bulkheads and docks south of the DRMO did not exist at that time. Aerial photographs from 1951 show the land in its present configuration, except for the northwest portion, which was not filled at that time.

Atlantic personnel inspected the site on September 30, 1988. Metal and wood products were stored throughout most of the site. Buildings 479 and 355 are located within the paved area to the south and are primarily used for storage. Building 491, located in the unpaved area to the north, is used for miscellaneous storage, including batteries. Metal baling operations were performed adjacent to Building 491 on a gravel surface. Based on an inspection of the building plans, Atlantic personnel identified the presence of a former battery acid handling facility at the north section of the site, within Building 491. A large scrap yard was located north of Building 479. Submarine batteries were stored in the southeast portion of the site adjacent to the railroad tracks; no leakage was observed.

Prior to 1995, the southern half of the DRMO was covered with asphalt, most of which had deteriorated, while the northern portion was unpaved and had a gravel surface. A Time-Critical Removal Action was performed at the DRMO by OHM Remediation Services Corporation. Construction aspects of the removal action were completed in January 1995. The removal action focused on the removal of soil contaminated with lead, polycyclic aromatic hydrocarbons (PAHs), and polychlorinated biphenyls (PCBs) from the northern half of the DRMO. The spent acid tank was also removed. The site was subsequently remediated and a composite cap was placed over a majority of the central and northern portions of the site (OHM, September 1995). The cap consisted of a woven geotextile liner, a geosynthetic clay liner (GCL), and a nonwoven geotextile liner. Bituminous concrete pavement was then placed over the entire area of the composite cap. The paved (southern) portion of the site was upgraded with an additional asphalt layer.

1.1.3 Previous Investigations

1.1.3.1 Phase I RI

The Phase I RI (Atlantic, 1992) at this site included test borings and monitoring well installation, as well as, soil, surface water, and groundwater sampling. Twelve shallow surface soil samples and 12 subsurface soil samples were collected from 7 test borings and 5 monitoring well borings. Four surface soil samples were collected and analyzed. Six groundwater samples were collected from five shallow wells and one deep well. Additionally, one surface water sample was collected from the Thames River at the northern end of this site (B&R Environmental, March 1997).

Concentrations of Volatile Organic Compounds (VOCs) in the soil were generally low. Semivolatile Organic Compounds (SVOCs) were present in most soil samples collected in the former landfill area. They were predominately comprised of PAHs, many of which were detected at elevated levels. A PCB, Aroclor 1260, was detected at almost all soil sample locations. Pesticides were detected in one soil sample at elevated concentrations.

Trichloroethene and 1,2-dichloroethene were detected in groundwater at three shallow downgradient wells. SVOCs (including PAHs), pesticides, petroleum hydrocarbons, or PCBs were not detected in any wells at the DRMO site. The inorganic groundwater analysis results indicated that selenium exceeded the primary drinking water standards for three wells. No VOCs, SVOCs, pesticides, or PCBs were detected in the upgradient surface water sample. Comparison of the inorganic results for this sample with the downgradient water sample (Goss Cove) did not suggest any detectable impact on the Thames River from the DRMO based on this limited data set.

1.1.3.2 Draft Focused Feasibility Study Field Investigation

A field investigation in support of the draft Focused Feasibility Study (FFS) was performed at the DRMO site in October 1993 to better define the extent of soil contamination. Twelve surface soil samples and twelve subsurface soil samples were collected. One surface and two subsurface field duplicates were also collected. One of the borings was completed as a monitoring well (6MW8S) (B&R Environmental, March 1997).

The highest concentrations of VOCs were present in soil samples west of Building 491. SVOCs, predominately PAHs, were detected in soil across the site. PCBs (Aroclor 1254, Aroclor 1260, and Aroclor 1242) were detected at nearly all boring locations at low to high concentrations. Pesticides (DDE, DDD, DDT) were detected at many locations across the site, primarily at low concentrations; however, several locations were found to have elevated levels. Concentrations of inorganic compounds were above background at all locations. Of primary concern at the site were the high levels of lead.

1.1.3.3 Phase II RI

Five new groundwater monitoring wells (two shallow and three deep) were installed and sampled during the Phase II RI. Additionally, 4 previously installed shallow wells were sampled. Two rounds of groundwater sampling were completed and ten samples were collected during each sampling round. Three subsurface soil samples were collected during the installation of three of the new wells (B&R Environmental, March 1997).

Relatively high concentrations of multiple organic and inorganic compounds were detected in the soil matrix at the DRMO. Organic chemicals detected at high concentrations include various halogenated aliphatic compounds, PAHs, phthalate esters, Aroclor-1254, and Aroclor-1260.

The results of the Phase II RI suggested that, in spite of the fact that relatively high concentrations of some VOCs were detected in the subsurface soil, it did not appear that substantial impact on the groundwater had occurred to date. In addition to the various organic chemicals detected in soil at the DRMO, relatively high concentrations of lead still remained in soil after the Time-Critical Removal Action was conducted during the course of the Phase II RI. Surface and subsurface soil concentrations of lead ranged as high as 4,980 mg/kg and 2,140 mg/kg, respectively. In spite of the high lead concentrations in soil, only limited evidence of lead migration to the water table is evidenced by the groundwater analytical results. Additionally, the results indicated that the cap effectively minimized precipitation infiltration to the groundwater (B&R Environmental, March 1997).

1.1.3.4 Time-Critical Removal Action

A Time-Critical Removal Action was performed at the DRMO by OHM Remediation Services Corporation during the course of the Phase II RI. Construction aspects of the removal action were completed in January 1995. The removal action focused on the removal of soil contaminated with lead, PAHs, and PCBs from the northern half of the DRMO.

First, a total of 73 soil samples and two pavement samples were collected from the scrap yard area north of Building 479. Then, soil was excavated to a depth of approximately 3 feet (or to the water table if the depth to water was less than 3 feet). Approximately 4,700 tons of soil was removed. Confirmation sampling was initiated when excavation operations were approximately 75% complete. Some further excavation was subsequently performed. Residual contamination above the PRGs remained in the soil after excavation was complete due to the excavation being limited to 3 feet by the shallow water table and exceedances of the allotted time for the project (B&R Environmental, March 1997).

After the completion of removal activities, the area was backfilled with clean borrow material. A cap consisting of a woven geotextile liner, a geosynthetic clay liner (GCL), and a nonwoven geotextile liner was installed. Approximately 12 inches of crushed stone and 3 inches of asphalt were placed over the clay/geotextile cover. The remaining (paved) portion of the DRMO was also upgraded via placement of an additional asphalt layer.

1.2 SCOPE AND OBJECTIVE

The objective of this Round 7 Groundwater Monitoring Report is to present and evaluate the results of the sixth round of long-term groundwater monitoring at the DRMO site. This monitoring is being conducted to verify the effectiveness of the cap installed as part of the Time-Critical Removal Action to reduce precipitation infiltration and leaching of contaminants and to confirm that contamination is not migrating through the soil, into the groundwater, and ultimately discharging to the Thames River. This groundwater monitoring is part of the post-closure associated with the DRMO cap.

To meet this objective, five existing Phase I and Phase II RI monitoring wells and five monitoring wells installed during Rounds 1 and 2 of the DRMO Groundwater Monitoring Program were sampled and analyzed for a suite of analytes based on an evaluation of site history and previous analytical results. Sampling and analyses were performed in accordance to the Groundwater Monitoring Plan (GMP) prepared for the DRMO (B&R Environmental, February 1998).

Because this is an interim report for the seventh round of groundwater monitoring, evaluation of monitoring results is limited to a comparison of these results to the criteria identified in the DRMO GMP (B&R Environmental, February 1998).

1.3 REPORT ORGANIZATION

This report has been prepared in the following format to address the requirements for long-term groundwater monitoring at the DRMO. Section 1.0 of the report is this brief introduction including the project scope and objective. Section 2.0 describes field sampling activities. Section 3.0 presents and evaluates the analytical results from the sampling effort.

This page intentionally left blank.

10 利用工作 1 中國保险

2.0 FIELD INVESTIGATION ACTIVITIES

Field investigation activities as part of the seventh round of groundwater monitoring included two rounds of groundwater level measurements and groundwater sampling of 10 monitoring wells. Monitoring well locations are shown on Figure 2-1. These activities were performed in accordance with the procedures and methodologies described in Section 3.0: Groundwater Monitoring System Installation and Section 4.0: Sampling and Analyses of the DRMO GMP (B&R Environmental, February 1998). A copy of the field activity log book is provided as Appendix A.

2.1 WATER LEVEL MEASUREMENTS

Water levels were measured in ten monitoring wells and one staff gage (in the Thames River). The staff gage was located at the outside edge of the storm sewer outfall leading to the Thames River, west of Building 397. The measurements were collected on January 18 and 20, 2000, within time periods of 11 minutes prior to and 11 minutes following the predicted high tide on January 20 and 17 to 44 minutes following the predicted low tide on January 18 for Smith Cove, opposite the DRMO on the Thames River. Tide tables are provided in Appendix B. Table 2-1 summarizes the groundwater measurements, and Figures 2-2 and 2-3 illustrate the potentiometric surface maps for the groundwater in the shallow aquifer during low tide and high tide, respectively. Groundwater level measurement sheets can be found in Appendix C.

2.2 GROUNDWATER SAMPLING

Ten monitoring wells were sampled during the seventh round of groundwater monitoring using low-flow purging and sampling techniques, in accordance with USEPA Region I Low-Flow Purging and Sampling Procedure GW-001.

The wells were purged prior to sampling using the dedicated bladder pumps with bottled nitrogen gas as the power source. Groundwater quality parameters, including pH, specific conductivity, temperature, dissolved oxygen, salinity, and Eh were measured during purging at 5 minute intervals using a YSI 610 DM datalogger and 6820 multi-parameter water quality monitor equipped with a flow-through cell. Turbidity was also measured using a LaMotte 2020 Turbidimeter. Calibration log sheets are found in Appendix D. Water levels were also measured during purging at 5-minute intervals. Purging continued until the above parameters stabilized. Copies of the low-flow purge data sheets are provided in Appendix E. All purge water was containerized in 55-gallon drums for off-site disposal by a disposal subcontractor, as discussed in Section 2.3.

Following purging, samples were collected directly from the discharge end of the Teflon[®]-lined pump tubing. The groundwater samples were collected and analyzed for VOCs, SVOCs, PAH, pesticides and PCBs, and total metals. Analytical results of the samples are discussed in Section 3.0. Copies of the sample log sheets are provided in Appendix E, and chain of custody records are provided in Appendix F.

2.3 DECONTAMINATION AND INVESTIGATION-DERIVED WASTE

All water quality and water level meters were decontaminated by rinsing with de-ionized water prior to and after use.

All investigation derived waste (IDW) (i.e., purge water) was turned over to NSB-NLON and disposed of offsite by a licensed disposal company.

TABLE 2-1

GROUNDWATER LEVEL MEASUREMENTS AND ELEVATIONS GROUNDWATER WATER MONITORING REPORT DRMO, NSB-NLON, GROTON, CONNECTICUT

Well Number	Reference Elevation ⁽¹⁾ (feet msl)	Depth to Water ⁽²⁾ (feet) LOW TIDE	Depth to Water ⁽³⁾ (feet) HIGH TIDE	Groundwater Elevation (feet msl) LOW TIDE	Groundwater Elevation (feet msl) HIGH TIDE	Well Screen Depth ⁽⁴⁾
6MW1S	8.63	7.20	3.74	1.43	4.89	Shallow
6MW2S	7.30	5.83	2.29	1.47	5.01	Shallow
6MW2D	7.85	5.44	3.85	2.41	4.00	Deep
6MW6S	12.16	8.79	8.49	3.37	3.67	Shallow
6MW6D	12.50	9.11	8.95	3.39	3.55	Bedrock
6MW9S	7.52	4.30	3.48	3.22	4.04	Shallow
6MW10S	5.19	3.58	0.35	1.61	4.84	Shallow
6MW10D	5.01	2.17	0.45	2.84	4.56	Deep
6MW11S	4.92	3.36	0.00 (5)	1.56	4.92	Shallow
6MW11D	5.31	2.60	0.77	2.71	4.54	Deep
SG-01	5.67	4.31	0.70	1.36	4.97	NA NA

msl: mean sea level (1982 Base Traverse System)

NOTES:

- 1 Reference elevation is top of well casing (1982 Base Traverse System)
- 2 Depth to water is from top of well casing. Measured January 18, 2000.
- 3 Depth to water is from top of well casing. Measured January 20, 2000.
- Well screen depths designated as shallow unconfined, deep unconfined, and bedrock groundwater.
- 6MW11S water level was 0.10 feet above the top of the PVC riser at time of high tide measurement.

This page intentionally left blank.

P:\GIS\NLON\7363_267.APR\POTENTIOMETRIC CONTOURS - LOW TIDE - ROUND 7 JCB 4/6/00

P:\GIS\NLON\7363 267.APR\POTENTIOMETRIC CONTOURS - HIGH TIDE - ROUND 7 JCB 4/4/00

CTO 0267

3.0 MONITORING RESULTS

The groundwater samples collected from monitoring wells 6MW1S, 6MW2S, 6MW2D, 6MW6S, 6MW6D, 6MW9S, 6MW10D, 6MW11S, and 6MW11D were analyzed for Target Compound List (TCL) organic chemicals and Target Analyte List (TAL) inorganic chemicals. Monitoring focused on the following organic and inorganic chemicals of potential concern, as identified in the GMP Monitoring Plan (B&R Environmental, February 1998):

- 1,1,2,2-Tetrachloroethane
- 1,2-Dichloroethane
- 1,2-Dichloroethene (total)
- Trichloroethene
- Vinyl Chloride
- Benzo(a)anthracene
- Benzo(a)pyrene
- Benzo(b)fluoranthene
- Benzo(k)fluoranthene
- Benzoic Acid

- Bis(2-ethylhexyl)phthalate
- Fluoranthene
- Fluorene
- Naphthalene
- Phenantrene
- Pyrene
- Heptachlor Epoxide
- Aroclors 1254 & 1260
- Hexachlorobiphenyl

- 4,4'-DDD
- Arsenic
- Barium
- Cadmium
- Chromium
- Copper
- Lead
- Silver
- Zinc

The contaminants listed were detected in soil either at concentrations that could result in exceedances of site specific Surface Water Protection Criteria (SWPCs) or at concentrations that exceed Connecticut's Pollutant Mobility Criteria for GB groundwater.

Analytical results are summarized on Table 3-1 and the positive COC detections are shown on Figure 3-1. Table 3-1 also compares the analytical results with the primary and secondary monitoring criteria, as established in the GMP (B&R Environmental, February 1998). Chemicals exceeding either primary or secondary monitoring criteria are noted by shading. The results of this comparison may be summarized as follows:

- There were no organic and inorganic exceedances of the primary monitoring criteria, which were sitespecific SWPCs using a dilution factor of 100. Additionally, there were no organic exceedances of secondary monitoring criteria, which is the Federal AWQC and the Connecticut WQS for protection of human health from consumption of aquatic organisms
- Arsenic was detected in the sample from monitoring wells 6MW10D at a concentration of 4.2 μg/L.
 This concentration exceeded the secondary monitoring criteria (AWQCs and WQSs for protection of human health from consumption of aquatic organisms) of 0.14 μg/L for arsenic.

- Copper was detected in the sample from monitoring well 6MW2S at a concentration of 7.5 μg/L. This concentration exceeded the secondary monitoring criterion of 2.4 μg/L, which is the Federal AWQC for the protection of aquatic life (chronic, saltwater).
- Zinc was detected in the samples from monitoring wells 6MW9S (111 μg/L), 6MW9S-D (120 μg/L), and 6MW10S (91.5 μg/L). These detections slightly exceeded the secondary monitoring criterion of 81 μg/L, which is the Federal AWQC for protection of aquatic life (chronic, saltwater).
- No other exceedances of secondary monitoring criteria were noted.

As discussed in Section 1.2, because this is only an interim report for the seventh round of groundwater monitoring, the evaluation of the analytical results is limited to the above comparison. No conclusions or recommendations are drawn from this comparison. Initial conclusions and recommendations were made in the Year 1 Summary Report. Additional conclusions and recommendations will be noted upon the completion of the second year of sampling (four rounds).

Data validation letters and laboratory data sheets are attached to this report as Appendix G.

TABLE 3-1

ROUND 7 ANALYTICAL RESULTS SUMMARY INTERIM GROUNDWATER MONITORING REPORT DRMO, NSB-NLON, GROTON, CONNECTICUT PAGE 1 OF 2

Chemical	Primary Monitoring	Secondary Monitoring	6MW1S ROUND 7	6MW2D ROUND 7	6MW2S ROUND 7	6MW6D ROUND 7	6MW6S ROUND 7	6MW9S ROUND 7	
	Criterion (1)	Criterion (1)	01/21/00	01/20/00	01/20/00	01/18/00	01/18/00	01/19/00	
OCs (ug/L)									
1,1,2,2-TETRACHLOROETHANE	1,100	11 (3)(4)	1 U	1 U ·	1 U	-1 U	1 U	1 U	
1.2-DICHLOROETHANE	29,700	99 (3)(4)	1 U	1 U	1 U	1 U	1 U	1 U	
CIS-1,2-DICHLOROETHENE	NA	NA	1 U	0.9 J	1 U	5	1 U	1,	
TRANS-1,2-DICHLOROETHENE	NA .	NA ·	1 U	1 U	1 U	1 U	1 U	1 U	
TRICHLOROETHENE	23,400	81 ⁽³⁾⁽⁴⁾	1 U	1 U	1 U	9	0.5 J	1 U	
VINYL CHLORIDE	157,500	525 ⁽³⁾⁽⁴⁾	1 U	0.8 J	1 U	1 U	1 U	1 U	
SVOCs (ug/L)							T		
BENZO(A)ANTHRACENE	3.0	0.049 (3)(4)	0.17 U	0.15 U	0.15 U	0.16 U	0.15 U	0.16 U	
BENZO(A)PYRENE	3.0	0.049 (3)(4)	0.17 U	0.15 U	0.15 U	0.16 U	0.15 U	0.16 U	
BENZO(B)FLUORANTHENE	3.0	0.049 (3)(4)	0.17 U	0.15 U	0.15 U	0.16 U	0.15 U	0.16 U	
BENZO(K)FLUORANTHENE	3.0	0.049 ⁽³⁾⁽⁴⁾	0.17 U	0.15 U	0.15 U	0.16 U	0.15 U	0.16 U	
BENZOIC ACID	NA	NA	20 U	20 UJ	20 UJ	21 UJ	20 UJ	21 UJ	
BIS(2-ETHYLHEXYL)PHTHALATE	590	5.9 ⁽³⁾⁽⁴⁾	2	2 U	2 U	2.1 U	2 U	2.1 U	
FLUORANTHENE	37,000	370 ⁽³⁾⁽⁴⁾	1.1 U	1 U	1 U	- 1 U	1 U	1.1 U	
FLUORENE	1,400,000	14,000 (3)(4)	1.1 U	1 U	1 U	1 U	1 U	1.1 U	
NAPHTHALENE	NA -	NA	1.1 U	1 U	1 U	1 U	1 U	1.1 U	
PHENANTHRENE	0.77	NA	1.1 ป	1 U	1 U	1 U	1 U	1.1 U	
PYRENE	1,100,000	11,000 (3)(4)	1.1 U	110	1 U	1 U	1 U	1.1 U	
Pesticides/PCBs (ug/L)									
4.4'-DDD	NA	0.00084 (3)(4)	0.02 U	0.021 U	0.021 U	0.021 U	0.02 U	0.02 U	
AROCLOR-1254	5.0	0.00017 (3)(4)	0.2 U	0.21 U	0.21 U	0.21 U	0.2 U	0.2 U	
AROCLOR-1260	5.0	0.00017 (3)(4)	0.2 U	0.21 U	0.21 U	0.21 U	0.2 U	- 0.2 U	
HEPTACHLOR EPOXIDE	0.5	0.00011 (3)(4)	0.01 U						
Inorganics (total/dissolved) (ug/L)							,	,	
ARSENIC	40	0.14 (3)(4)	2.6 UJ	2.6 UJ	2.6 UJ	2.6 U	2.6 U	2.6 U	
BARIUM	NA	NA :	21.5	174	28.1	39.3	27.6	14.6	
CADMIUM	60	NA	0.30 U	0.33 U	0.60 U	0.45 U	0.36 U	0.54 U	
CHROMIUM	1,100	50 ⁽²⁾	1.0 U	2.4 U	1.0 U	1.0 U	1.0 U	1.0 U	
COPPER	480	2.4 ⁽²⁾	1.3 U	3.2 U	7.5	1.3 U	1.3 U	3.0 U	
LEAD	130	8.1 ⁽²⁾	1.8 UJ	1.8 U	6.1 U	1.8 U	1.8 U	1.8 U	
SILVER	120	1.9 ⁽²⁾	1.1 U	1.1 UJ	1.1 UJ	1.1 UJ	1.1 UJ	-1.1 .UJ	
ZINC	1,230	81 ⁽²⁾	4.5 J	27.0 J	36.9 J	13.3 J	3.8 U	111	

NOTES:

Bold numbers denote exceedance of secondary monitoring criterion. There are no exceedances of primary monitoring criteria.

- 1 Surface Water Protection Criteria for substances in groundwater, using a site-specific dilution factor of 100.
- 2 Federal Ambient Water Quality Criteria for protection of aquatic life (chronic, saltwater).
- 3 Federal Ambient Water Quality Criteria for protection of human health from consumption of organisms.
- 4 Connecticut Water Quality Criteria for protection of human health from consumption of organisms.
- Estimated Value
- R Rejected Value
- Undetected
- NA Not Available

TABLE 3-1

ROUND 7 ANALYTICAL RESULTS SUMMARY INTERIM GROUNDWATER MONITORING REPORT DRMO, NSB-NLON, GROTON, CONNECTICUT PAGE 2 OF 2

Chemical	Primary Monitoring	Secondary Monitoring	6MW9S (DUP) ROUND 7	6MW10D ROUND 7	6MW10S ROUND 7	6MW11D	6MW11S
•	Criterion (1)	Criterion (1)	01/19/00	01/18/00	01/18/00	ROUND 7 01/19/00	ROUND 7 01/19/00
VOCs (ug/L)		- Ontonon	01713700	01/10/00	1 01/10/00	01/19/00	01/19/00
1,1,2,2-TETRACHLOROETHANE	1,100	11 (3)(4)	1 U	1 U	1 U	1 U	1 U
1,2-DICHLOROETHANE	29,700	99 (3)(4)	1 U	1 U	1 U	1 U	1 U
CIS-1,2-DICHLOROETHENE	NA	NA	1 U	15	0.9 J	1 0	1 0
TRANS-1,2-DICHLOROETHENE	NA	NA	1 U	1 U	1 U	1 U	1 U
TRICHLOROETHENE	23,400	81 (3)(4)	1 U	5	1 U	1 U	1 U
VINYL CHLORIDE	157,500	525 ⁽³⁾⁽⁴⁾	1 U	1 U	1 U	1 U	1 U
SVOCs (ug/L)							<u> </u>
BENZO(A)ANTHRACENE	3.0	0.049 (3)(4)	0.16 U	0.16 U	0.15 U	0.15 U	0.16 U
BENZO(A)PYRENE	3.0	0.049 (3)(4)	0.16 U	0.16 U	0.15 U	0.15 U	0.16 U
BENZO(B)FLUORANTHENE	3.0	0.049 (3)(4)	0.16 U	0.16 U	0.15 U	0.15 U	0.16 U
BENZO(K)FLUORANTHENE	3.0	0.049 (3)(4)	0.16 U	0.16 U	0.15 U	0.15 U	0.16 U
BENZOIC ACID	NA	NA	21 UJ	21 UJ	20 UJ	20 UJ	20 UJ
BIS(2-ETHYLHEXYL)PHTHALATE	590	5.9 ⁽³⁾⁽⁴⁾	2.1 U	2.1 U	4.1	2 U	2 U
FLUORANTHENE	37,000	370 ⁽³⁾⁽⁴⁾	1.1 U	1.1 U	1 U	1: U	1.1 U
FLUORENE	1,400,000	14,000 (3)(4)	1.1 U	1.1 U	1 U	1 U	1.1 U
NAPHTHALENE	NA	NA	1.1 U	1.1 U	1 U	1 U	1.1 U
PHENANTHRENE	0.77	NA	1.1 U	1.1 U	1 U	1 U	1.1 U
PYRENE	1,100,000	11,000 ⁽³⁾⁽⁴⁾	1.1 U	1.1 U	1 U	1 U	1.1 U
Pesticides/PCBs (ug/L)							M
4,4'-DDD	NA	0.00084 (3)(4)	0.021 U	0.02 U	0.02 U	0.02 U	0.02 U
AROCLOR-1254	5.0	0.00017 (3)(4)	0.21 U	0.2 U	0.2 U	0.2 U	0.2 U
AROCLOR-1260	5.0	0.00017 (3)(4)	0.21 U	0.2 U	0.2 U	0.2 U	0.2 U
HEPTACHLOR EPOXIDE	0.5	0.00011 (3)(4)	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
Inorganics (total/dissolved) (ug/L)							0.01 0
ARSENIC	40	0.14 (3)(4)	2.6 U	4.2 J	2.6 U	2.6 UJ	2.6 U
BARIUM	NA	NA	14.4	44.8	127	280	89.4
CADMIUM	60	NA	0.61 U	0.37 U	1.2 U	0.30 UJ	0.64 U
CHROMIUM	1,100	50 ⁽²⁾	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
COPPER	480	2.4 (2)	2.9 U	1.3 U	4.9 U	1.9 U	5.0 U
LEAD	130	8.1 ⁽²⁾	1.8 U	1.8 U	1.8 U	1.8 U	2.7 U
SILVER	120	1.9 ⁽²⁾	1.1 UJ	1.1 UJ	1.1 UJ	1.1 UJ	1.1 UJ
ZINC	1,230	81 ⁽²⁾	120	77.6	91.5	8.7 J	77.4

NOTES:

Bold numbers denote exceedance of secondary monitoring criterion. There are no exceedances of primary monitoring criteria.

1 Surface Water Protection Criteria for substances in groundwater, using a site-specific dilution factor of 100.

- 2 Federal Ambient Water Quality Criteria for protection of aquatic life (chronic, saltwater).
 3 Federal Ambient Water Quality Criteria for protection of human health from consumption of organisms.
 4 Connecticut Water Quality Criteria for protection of human health from consumption of organisms.
- Estimated Value
- Rejected Value
- Undetected U
- NA Not Available

REFERENCES

(Atlantic, August 1992): Phase I Remedial Investigation Naval Submarine Base - New London, Groton, Connecticut. Atlantic Environmental Services, Inc., Colchester, CT.

(Atlantic, March 1995): Action Memorandum for the Defense Reutilization and Marketing Office and the Spent Acid Storage and Disposal Area, Installation Restoration Program. Atlantic Environmental Services, Inc., Colchester, CT.

(Atlantic, April 1995): Background Concentrations of Inorganics in Soil. Installation Restoration Program, Naval Submarine Base - New London, Groton, Connecticut. Atlantic Environmental Services, Inc., Colchester, CT

(B&R Environmental, March 1997): Phase II Remedial Investigation for Naval Submarine Base, New London, Groton, Connecticut. Brown & Root Environmental, King of Prussia, PA.

(B&R Environmental, February 1998): Groundwater Monitoring Plan for Defense Reutilization and Marketing Office, Naval Submarine Base, New London, Groton, Connecticut. Brown & Root Environmental, King of Prussia, PA.

(CT, 1995): "Standards for Quality of Public Drinking Water." Title 19, Regulation 19-13, Section 19-13-B102. State of Connecticut

(CTDEP, December 1995): "Remediation Standard Regulations.". State of Connecticut Department of Environmental Protection, Bureau of Water Management, Permitting, Enforcement and Remediation Division, Hartford, Connecticut.

(NFESC, February 1996): Navy Installation Restoration Laboratory Quality Assurance Guide (Interim Guidance). Naval Facilities Engineering Service Center.

(OHM, September 1995): Final Report for Interim Remedial Action, Site 6, Naval Submarine Base, New London, Groton, Connecticut. OHM Remediation Services Corporation, Hopkinton, MA

(SCS, 1983): Soil Survey of New London County Connecticut. Soil Conversation Service.

(USGS, 1960): Geologic Map of the Uncasville Quadrangle, Connecticut, Surficial Geology. United States Geological Survey.

(USGS, 1967): Bedrock Geologic Map of the Uncasville Quadrangle, New London County, Connecticut. United States Geological Survey.

APPENDIX A

FIELD ACTIVITIES LOG BOOK

miki minaliku jilimun kongent oto inganaingan din din da kati bilahi bilakini menikesi kendistra ketanga

i and de la propieta de la comparcia de la propieta de la comparcia de la comparcia de la comparcia de la comp O primeira de la comparcia de l

and provide the first of the provided and the second of th

PROJECT NO. 7362 TITLE NSB-NLON BOOK XIT Trues 1/18/00 Work continued from Page to the Low Flow Purche Duty Sheet for well bull to specific purge dets. SN begins sompling 6mucs - sample 0905 DRMD-601465+6W-07. Refet 60 Gu Suple log sheet for this well sample for specific sampling denta KS bogins tampling 6mw64 - Sample 0915 ID DRMO-6mw64-GW-01. Refer to GN Sample LD, Sheet for this well sample for specific sampling olata. SN ands sampling and loads equip 0935 in rehiclo KS ands skupling. SN + KS local 0943 Which with equipment and depart for BLAG 166 KS + SW arrive at BLD6 166 1000 KS deputs to pick up Isw prep paripment and Sample bottles to Damb Sampling . | Work continued to Page 179 1/14/00 Touth. Neil

PROJECT NO. 7363 TITLE NSB-NLOW BOOK 24/5 TUSS 1/18/00 Work continued from Page 170 1030 KS returns to 1045 KS & SN depart for Lunch K8 & SN | carrive | at | DRMO | Duty 11)5 purge well into 55-gallon drym proceed to wells 6MW100 and 105 sets up on well 6 mulo D 1155 Sets up on well 6mm109 KS begins purging of well GARNIOD 1210 Refer to the con two page Date Sheet for well & GMN100 for specific Son Begins purging well bours. 120 Refer to the LF Ruge De & Sheet for well & congriss for specific puret de fer. KS degins sampling. Sample 70 is 1315 DANO-6MNIOD-GUT-07. This well has an MS/MSD associated with it (an't) Work continued to Page 186.

Sott w Steil

01/18/00 179

Work	continued	to	Pan 187187
0	•		1/18/00
			DOLE

TITLE NSB-NLOW

		BOOK 2415
Work continued	from Page 4800	
		smy (nouns 7)
+	Jampes sum	any (18002) 13
WELL #	DATE SAMPLES	TIME COMMENTS
GMWIS	12-00	1,525
6MIV25		1500
1 1	1.20.00	
6 mw2D	(2φ . φυ	1510
6mw6s	1/18/00	0905
6MW 60	1/14/00	9915
6MN 95	1.19.00	0840 OUP
64W105	1/18/00	
6MM10D	1/18/00	1315 SULPHUN ORDA
1 (1	1.19.00	1415
GMWIIS	1. 9.00	
GMWILD	1. 11.00	1433

181

APPENDIX B

TIDE TABLES

All times listed are in Local Time, and all heights are in Feet.

		ondon, Conne		- 4	· •	December 1	000	Agricultural annual attention to the agricultural and an artist and an artist and an artist attention and artist and an artist and an artist attention and artist attention artist attention and artist attention artist attention artist attention and artist attention artist attention and artist attention	ara Sarah III	grand god beregand to del a
		redictions National Oc		nd Low Waters vice	1 }	December, 1	333			
	Standa	ard Time					٠			
	Day	Time	Ht.	Time	Ht.	Time	Ht.	Time	Ht.	
	1 W	421am H	2.7	1038am L	0.3	443pm H	2.5	1057pm L	0.2	*.
	2 Th	519am H	2.8	1137am L	0.2	544pm H	2.4	1148pm L	0.2	
	3 F	609am H	2.9	1229pm L	0.2	635pm H	2.3			
	4 Sa	1234am L	0.2	652am H	2.9	117pm L	0.1	718pm H	2.3	
	5 Su	118am L	0.2	730am H	3.0	200pm L	0.1	757 pm H	2.3	
	6 M	159am L	0.3	806am H	3.0	241pm L	0.0	834pm H	2.3	
	7 Tu	240am L	0.3	841am H	3.0	322pm L	0.0	911pm H	2.3	
	8 W	320am L	0.3	916am H	3.0	402pm L	0.0	948pm H	2.3	
	9 Th	402am L	0.4	952am H	3.0	444pm L	0.0	1028pm H	2.3	
	10 F	445am L	0.5	1029am H	2.9	527pm L	0.1	1109pm H	2.3	
	11 Sa	530am L	0.6	1107am H	2.8	611pm L	0.1	1153pm H	2.3	
	12 Su	618am L	0.6	1149am H	2.7	658pm L	0.2 2.6	746pm L	0.2	
	13 M	1240am H	2.2	710am L 806am L	0.7	1235pm H 127pm H	2.5	835pm L	0.3	
	14 Tu	130am H	2.3	903am L	0.6	226pm H	2.4	925pm L	0.3	
	15 W	223am H 317am H	2.5	1000am L	0.5	328pm H	2.3	1015pm L	0.2	
	10 TH	410am H		1055am L	0.3	428pm H	2.3	1104pm L	0.1	
	18 Sa	502am H	2.9	1149am L	0.1	526pm H	2.4	1152pm L	0.0	
	19 Su	553am H	3.2	1240pm L	-0.2	622pm H	2.5	· - · ·		
	20 M	1241am L	-0.1	643am H	3.4	131pm L	-0.4	715pm H	2.6	
	21 Tu	130am L	-0.2	733am H	3.6	221pm L	-0.6	808pm H	2.7	
	22 W	221am L	-0.3	824am H	3.7	311pm L	-0.7	900pm H	2.7	
	23 Th	313am L	-0.3	915am H	3.7	402pm L	-0.7	953pm H	2.8	
	24 F	406am L	-0.3	1008am H	3.6	454pm L	-0.7	1047pm H	2.7	
	25 Sa	502am L	-0.2	1102am H	3.4	547pm L	-0.5	1143pm H	2.7	
	26 Su	601am L	-0.1	1159am H	3.1	641pm L	-0.4			
	27 M	1241am H	2.7	702am L	0.0	1258pm H	2.8	737pm L	-0.2	
	28 Tu	142am H	2.6	805am L	0.1	201pm H	2.6	833pm L	-0.1 0.1	
	29 W	245am H	2.6	909am L	0.2	306pm H 410pm H	2.3	929pm L 1023pm L	0.2	
	30 Th	347am H 446am H	2.6	1011am L 1109am L	0.2	511pm H	2.1	1115pm L	0.2	
					0.55272.05	OLL BUILDING	77-14 No. 168			
	Hey L	ondon, Conn	Vict :	and Low Water	- 1	January, M	sae t			
		National Oc			- /					
	Stand	ard Time				•		•		
	Day	Time	Ht.	Time	Ht.	Time	Ht.	Time	Ht.	
					0.1	607pm H	2.0			
	1 Sa	539am H 1204am L		1205pm L 624am H	2.7	1253pm L	0.1	652pm H	2.0	
	2 Su 3 M		0.2	704am H	2.8	136pm L	0.0	732pm H	2.0	
	4 Tu		0.2	741am H	2.8	218pm L	0.0	810pm H	2.1	
	5 W			817am H	2.9	258pm L	-0.1	848pm H	2.1	
	6 Tb	for an experience will be a first		853am H	2.9	338pm L	-0.1	925pm H	2.2	
	7 7			929am H	2.9	418pm L	-0.2	1004pm H	2.2	
	8 Sa	419am L	0.3	1005am H	2.8	459pm L	-0.1	1043pm H	2.2	
	9 Su	503am L	0.3	1043am H	2.8	541pm L	-0.1	1123pm H	2.3	
	10 M	549am L	0.4	1124am H	2.7	624pm L	0.0			
	11 Tu			638am L	0.4	1207pm H	2.6	709pm L		
	12 W			731am L	0.4	1256pm H	2.4	756pm L	0.1	
	13 Th			829am L	0.4	152pm H	2.3	845pm L 937pm L	0.2 0.2	
	14 1			928am L	0.3	253pm H 358pm H	2.2	1030pm L	0.1	
	15 Sa			1027am L 1124am L	-0.1	501pm H		1124pm L	0.0	
	16 Su 17 M			1220pm L	-0.3	601pm H			•••	
	17 1 28 m			623am H	3.3	460pm &		659pm H	2.3	
	n i			718am H	3.4	204mm-h		753pm H	2.5	
	20 1	205am L		811am H	3.5	25 5gm =1		846pm H	2.6	
90 ST 40	20 T	259am L		903am H	3.4	345pmL	-	938pm H	2.7	
	22 S	353am L		955am H	3.3	434pm L		1030pm H	2.7	
	23 St			1047am H	3.1	524pm L		1123pm H	2.7	
	24)			1140am H	2.9	615pm L		707	-0.2	
	25 Tu			640am L 739am L	-0.1	1235pm H 131pm H		707pm L 800pm L	-0.1	

APPENDIX C

GROUNDWATER LEVEL MEASURMENT SHEET

	I	1	
L		_	Į

.Tetra Tech NUS, Inc.

GROUNDWATER LEVEL MEASUREMENT SHEET

Project:		NSB-NLON	1	Site:	DRMO			
Project No.:		7363		Personnel:	SIMPSOT	X/NEI		
Temperature: Precipitation: Tide:		HIGH @	0814	Date: Level Indicat Serial Numb		1.20.00 HERUN' NUS 001		
Well/Piezometer Number	Time	(A) Elevation of Reference Point (feet)*	(B) Water Level Indicator Reading (feet)*	=(A)-(B) Groundwater Elevation (feet)*	Total Well Depth (feet)*	Tidally Influenced	Comments	
6MW1S	0635	8.63	3,74	4.89	15.68	y	·	
6MW2S	0831	7.30	2,29	5.01	13.63	ý		
6MW2D	0837	7.85	3.55	4.00	88.84	У		
6MW6S	0813	12.16	8.49	3.67	. 18.58	7		
6MW6D	0315	12.50	8.95	3.55	46.00	N	BUNEHOLE *	
6MW9S	0319	7.52	3.48	4.04	11.75	14		
6MW10S	0824	5.19	0.35	4.84	13.31	Y	·	
6MW10D	0823	5.01	0.45	4.56	54.06	У		
6MW11S	0828	4.92	+0.10	5.02	13.50	У	WATER AL	
6MW11D	0829	5.31	0.77	4,54	85.00	Y		
SG-1	0:34	5.67	0.70	4.97	•• .	/	River Gauge	
				,	(, i		
				1				
	·							

^{*} Measurements to the nearest 0.01 foot.

		1	l
			ı
	и.		K
			ı
			۱
_	•		۲

Tetra Tech NUS, Inc.

GROUNDWATER LEVEL MEASUREMENT SHEET

Site: Project: NSB-NLON **DRMO** SIMPSON/ NEIL Project No.: 7363 Personnel: 118 09 13°F Temperature: Date: HERON NONE Level Indicator Type: Precipitation: NUS COI WW W 1338 Tide: Serial Number: (A) (B) =(A)-(B)Well/Piezometer Water Level **Total Well** Elevation of Groundwater Tidally Time Comments Reference Indicator Reading Number Elevation Depth (feet)* Influenced Point (feet)* (feet)* (feet)* 8.63 15.68 7.20 1.43 1411 **6MW1S** 7.30 13.63 1404 5.83 1.47 **6MW2S** 1406 2.41 7.85 88.84 5.44 6MW2D 8.79 3.37 12.16 18.58 1420 N **6MW6S** BUNEHOLE 3.39 12.50 46.00 1419 N 911 6MW6D 7.52 3.22 11.75 4.30 N 1416 6MW9S 5.19 13.31 1414 3.58 1,61 6MW10S 2.84 5.01 54.06 ス・1フ 1422 6MW10D 4.92 13.50 1.56 1355 3.36 6MW11S 5.31 85.00 2.7/ 1357 2.60 6MW11D 1.36 5.67 River Gauge 4.31 1409 SG-1 136

^{*} Measurements to the nearest 0.01 foot.

APPENDIX D

MONITORING INSTRUMENT CALIBRATION LOG

EQUIPMENT CALIBRATION LOG

INSTRUMENT NAME/MODEL: YSI 610 DM

PROJECT NAME: NSB-NON AREA A/DRMO

MANUFACTURER:

YSI 5612, #193933R

PROJECT NUMBER: 5082/7363

CALIBRATION	INITIAL	STANDARDS	PROCEDURE	ADJUSTMENTS	FINAL	SIGNATURE	COMMENTS
DATE	SETTINGS	USED		MADE	SETTINGS	1	
1.18.99		sr wnd	ASPER MOR.	CALL AIL	PAR.	725-1	SP. OND. PH 734
1.19.00		1.000 US/CN				75.5%	PH 7 7 4
1.30.00						71,21	DO
1.21.00						72.28	ORP
1.22.00						7871	
1.23.00						The state of the s	2 1222
1.24.40						73-1	SP. CUND, 1000445/CM LOT 990705 EXP 7/00
							101 990705
<u> </u>		ļ					EXP 7/00
<u> </u>							01 7
							PH 7 10T 990504-
<u> </u>							PH 4 UT 990601
							EXP. 6/01
							ENF. 6/01
-							ZOBELL
				<u> </u>		<u> </u>	10T 98M041D
1							LOT 98M0410 EXP 10/00
							FOLLOWED FOUIDMENT
							FOLLOWED EQUIPMENT MANUEL FUR CALIBRATION
							TOTAL CONTROL OF
					·		

EQUIPMENT CALIBRATION LOG

INSTRUMENT NAME/MODEL: YSI 610 DM

PROJECT NAME: NSB-NION AREA-A/DRAND

MANUFACTURER:

151 SER.#193454R

PROJECT NUMBER: 5082/7363

CALIBRATION	INITIAL	STANDARDS	PROCEDURE	ADJUSTMENTS	FINAL	SIGNATURE	COMMENTS
DATE	SETTINGS	USED		MADE	SETTINGS	_	,
1-18.80						73.58	
1.19.00	_					KER	
1.20.00						75/	SEE
1.21.00		-				7/2/	OTHER CAUSIATION
1-22-00				·		73 2-1	US FOR YS)
1.23 00						76.5-	
1.24.00						78.28	
1.25.00						721	
				, .			
.6							
					98 .		
							अनुसर प्रहासका र
						,	
	5 - 3 mg/				9-7-1 (9-4-44-4-20-)		
							
 							
 		·					
		· · · · · · · · · · · · · · · · · · ·					

EQUIPMENT CALIBRATION LOG

INSTRUMENT NAME/MODEL : PHOTOVAC 2030

PROJECT NAME: NSB-NLOW (DRMO and AREL A)

MANUFACTURER:

PE (SQUIM & EDFE DOI)

7363/c70 261
PROJECT NUMBER: 508/ C70 203

CALIBRATION	INITIAL	STANDARDS	PROCEDURE	ADJUSTMENTS		SIGNATURE	COMMENTS
DATE	SETTINGS	USED		MADE	SETTINGS	·	
1/17/00	0,0	ISOBUTYLENE.	PEL MAN.	3202	100 ppm	Souther D	100 ppm Stordard
1/18/00	0.0	11	10.	/1	magoor	Just Nee	•
1/19/00	0.0	t (11	/ '	100 PPM 100 PPM	Southail	8 (
1.20.00	0.0	u'	11	(1	100 PPM	775-8	,1
1.21.00	0,0	(1	11	11	100 PM	75.	11
1.22.00	O. D	1((1)	11	100 YM	RES	.11
1/23/00	0.0	ê	11	11	100 ppm	Swa	. 11
1.24.00	0.0	1 ((1	CA4-	100 PPM	788	1:
·							
				·			
						·	
							•
							1
		<u> </u>					

APPENDIX E

GROUNDWATER SAMPLE LOGSHEETS AND LOW-FLOW PURGE DATA SHEETS

in the House Ellis III that Method per her common eller

	 							<u> </u>	
Project Site Name:	NSB-NLO	N / DRMC)			No.: DRMO-		S gw-07	
Project No.:	7363			***************************************		Location:	6MW15	<u> </u>	
					Sample	PSON			
[] Domestic Well Data			•	•	C.O.C. No.: OIZ 00-07 Type of Sample:				
[x] Monitoring Well Data	a								
[] Other Well Type:			·			w Concentr			
[] QA Sample Type:					[] Hig	h Concent	ration		
SAMPLING DATA:									
Date: - 2 - 00	Color	рН	s.c.	Temp.	Turbidity	DO	Eh	Salinity	
Time: 1525		Standard 1		Degrees C	NTU	mg/l	mV	ppt	
Method:Low Flow/Bladder Pump	CLEAR	6.49	10,99	6.1	0	. 0	100	5,99	
PURGE DATA:									
Date: -2 -00									
Method:Low Flow/Bladder Pump	_								
Monitor Reading (ppm):]								
Well Casing Diameter & Material	1	See Attac	ched Lo	ow Flow Pu	rge Data S	heet			
Type: ス PVC				for Purge (Data				
Total Weil Depth (TD): 15,7	1		4						
Static Water Level (WL): 6.79	1		ű.						
One Casing Volume(gal): 1.5	1					*			
Start Purge (hrs): 140 \(\text{\(\text{L}\)}\)	1								
End Purge (hrs): 1522	1								
218	1								
Total Purge Time (min): 50									
Total Vol. Purged (gal): 5.2	-								
	TION:		• ••••••••••••••••••••••••••••••••••••				·	1	
Total Vol. Purged (gal): 5.2	TION:	Preserva	ative	The state of the s	Container Re	quirements	· ·	Collected	
Total Vol. Purged (gal): 5.2 SAMPLE COLLECTION INFORMA	TION:		ative			equirements 40 ml Vial			
Total Vol. Purged (gal): 5.2 SAMPLE COLLECTION INFORMA Analysis	TION:	HCL	·				ass	<i>3</i>	
Total Vol. Purged (gal): 5. 2. SAMPLE COLLECTION INFORMA: Analysis TCL VOLATILES (LOW-LEVEL)	TION:	HCL 4 ^c	./ 4 ⁰ C			40 ml Vial		3	
Total Vol. Purged (gal): 5.2 SAMPLE COLLECTION INFORMA Analysis TCL VOLATILES (LOW-LEVEL) TCL SEMIVOLATILES	TION:	HCL 4°	/4°C °C °C °C			40 ml Vial Qt. Amber Gl	ass	<i>3</i>	
Total Vol. Purged (gal): 5.2 SAMPLE COLLECTION INFORMA Analysis TCL VOLATILES (LOW-LEVEL) TCL SEMIVOLATILES TCL PEST/PCBs	TION:	HCL 4 ^c	/4°C °C °C °C			40 ml Vial Qt. Amber Gla Qt. Amber Gla	ass	3 2 2	
Total Vol. Purged (gal): 5.2 SAMPLE COLLECTION INFORMA Analysis TCL VOLATILES (LOW-LEVEL) TCL SEMIVOLATILES TCL PEST/PCBs TCL PAH		HCL 4°	./4°C °C °C °C 4°C			40 ml Vial Qt. Amber Gli Qt. Amber Gli Qt. Amber Gli	ass	3 2 2	
Total Vol. Purged (gal): 5.2 SAMPLE COLLECTION INFORMA Analysis TCL VOLATILES (LOW-LEVEL) TCL SEMIVOLATILES TCL PEST/PCBs TCL PAH TAL METALS (TOTAL)		HCL 4 ^C 4 ^C HNO ₃ /	./4°C °C °C °C 4°C			40 ml Vial Qt. Amber Gla Qt. Amber Gla Qt. Amber Gla L PE	ass	3 2 2	
Total Vol. Purged (gal): 5.2 SAMPLE COLLECTION INFORMA Analysis TCL VOLATILES (LOW-LEVEL) TCL SEMIVOLATILES TCL PEST/PCBs TCL PAH TAL METALS (TOTAL)		HCL 4 ^C 4 ^C HNO ₃ /	./4°C °C °C °C 4°C			40 ml Vial Qt. Amber Gla Qt. Amber Gla Qt. Amber Gla L PE	ass	3 2 2	
Total Vol. Purged (gal): 5.2 SAMPLE COLLECTION INFORMA Analysis TCL VOLATILES (LOW-LEVEL) TCL SEMIVOLATILES TCL PEST/PCBs TCL PAH TAL METALS (TOTAL)		HCL 4 ^C 4 ^C HNO ₃ /	./4°C °C °C °C 4°C			40 ml Vial Qt. Amber Gla Qt. Amber Gla Qt. Amber Gla L PE	ass	3 2 2	
Total Vol. Purged (gal): 5.2 SAMPLE COLLECTION INFORMA Analysis TCL VOLATILES (LOW-LEVEL) TCL SEMIVOLATILES TCL PEST/PCBs TCL PAH TAL METALS (TOTAL)		HCL 4 ^C 4 ^C HNO ₃ /	./4°C °C °C °C 4°C			40 ml Vial Qt. Amber Gla Qt. Amber Gla Qt. Amber Gla L PE	ass	3 2 2	
Total Vol. Purged (gal): 5.2 SAMPLE COLLECTION INFORMA Analysis TCL VOLATILES (LOW-LEVEL) TCL SEMIVOLATILES TCL PEST/PCBs TCL PAH TAL METALS (TOTAL)		HCL 4 ^C 4 ^C HNO ₃ /	./4°C °C °C °C 4°C			40 ml Vial Qt. Amber Gla Qt. Amber Gla Qt. Amber Gla L PE	ass	3 2 2	
Total Vol. Purged (gal): 5.2 SAMPLE COLLECTION INFORMA Analysis TCL VOLATILES (LOW-LEVEL) TCL SEMIVOLATILES TCL PEST/PCBs TCL PAH TAL METALS (TOTAL) TAL METALS (DISSOLVED) KE		HCL 4° 4° HNO ₃ /	/ 4° C ° C ° C ° C ° C ' 4° C			40 ml Vial Qt. Amber Gla Qt. Amber Gla Qt. Amber Gla L PE	ass	3 2 2	
Total Vol. Purged (gal): 5.2 SAMPLE COLLECTION INFORMA Analysis TCL VOLATILES (LOW-LEVEL) TCL SEMIVOLATILES TCL PEST/PCBs TCL PAH TAL METALS (TOTAL)		HCL 4° 4° HNO ₃ /	/ 4° C ° C ° C ° C ° C ' 4° C			40 ml Vial Qt. Amber Gla Qt. Amber Gla Qt. Amber Gla L PE	ass	3 2 2	
Total Vol. Purged (gal): 5.2 SAMPLE COLLECTION INFORMA Analysis TCL VOLATILES (LOW-LEVEL) TCL SEMIVOLATILES TCL PEST/PCBs TCL PAH TAL METALS (TOTAL) TAL METALS (DISSOLVED) KE		HCL 4° 4° HNO ₃ /	/ 4° C ° C ° C ° C ° C ' 4° C			40 ml Vial Qt. Amber Gla Qt. Amber Gla Qt. Amber Gla L PE	ass	3 2 2	
Total Vol. Purged (gal): 5.2 SAMPLE COLLECTION INFORMA Analysis TCL VOLATILES (LOW-LEVEL) TCL SEMIVOLATILES TCL PEST/PCBs TCL PAH TAL METALS (TOTAL) TAL METALS (DISSOLVED) KE		HCL 4° 4° HNO ₃ /	/ 4° C ° C ° C ° C ° C ' 4° C			40 ml Vial Qt. Amber Gla Qt. Amber Gla Qt. Amber Gla L PE	ass	3 2 2	
Total Vol. Purged (gal): 5.2 SAMPLE COLLECTION INFORMA Analysis TCL VOLATILES (LOW-LEVEL) TCL SEMIVOLATILES TCL PEST/PCBs TCL PAH TAL METALS (TOTAL) TAL METALS (DISSOLVED) KE		HCL 4° 4° HNO ₃ /	/ 4° C ° C ° C ° C ° C ' 4° C			40 ml Vial Qt. Amber Gla Qt. Amber Gla Qt. Amber Gla L PE	ass	3 2 2	
Total Vol. Purged (gal): 5.2 SAMPLE COLLECTION INFORMA Analysis TCL VOLATILES (LOW-LEVEL) TCL SEMIVOLATILES TCL PEST/PCBs TCL PAH TAL METALS (TOTAL) TAL METALS (DISSOLVED) KE		HCL 4° 4° HNO ₃ /	/ 4° C ° C ° C ° C ° C ' 4° C			40 ml Vial Qt. Amber Gla Qt. Amber Gla Qt. Amber Gla L PE	ass	3 2 2	
Total Vol. Purged (gal): 5.2 SAMPLE COLLECTION INFORMA Analysis TCL VOLATILES (LOW-LEVEL) TCL SEMIVOLATILES TCL PEST/PCBs TCL PAH TAL METALS (TOTAL) TAL METALS (DISSOLVED) KE		HCL 4° 4° HNO ₃ /	/ 4° C ° C ° C ° C ° C ' 4° C			40 ml Vial Qt. Amber Gla Qt. Amber Gla Qt. Amber Gla L PE	ass	3 2 2	
Total Vol. Purged (gal): 5.2 SAMPLE COLLECTION INFORMA Analysis TCL VOLATILES (LOW-LEVEL) TCL SEMIVOLATILES TCL PEST/PCBs TCL PAH TAL METALS (TOTAL) TAL METALS (DISSOLVED) KE		HCL 4° 4° HNO ₃ /	/ 4° C ° C ° C ° C ° C ' 4° C			40 ml Vial Qt. Amber Gla Qt. Amber Gla Qt. Amber Gla L PE	ass	3 2 2	
Total Vol. Purged (gal): 5.2 SAMPLE COLLECTION INFORMA Analysis TCL VOLATILES (LOW-LEVEL) TCL SEMIVOLATILES TCL PEST/PCBs TCL PAH TAL METALS (TOTAL) TAL METALS (DISSOLVED) KE		HCL 4° 4° HNO ₃ /	/ 4° C ° C ° C ° C ′ 4° C			40 ml Vial Qt. Amber Gla Qt. Amber Gla Qt. Amber Gla L PE L PE	ass	3 2 2	
Total Vol. Purged (gal): 5.2 SAMPLE COLLECTION INFORMA Analysis TCL VOLATILES (LOW-LEVEL) TCL SEMIVOLATILES TCL PEST/PCBs TCL PAH TAL METALS (TOTAL) TAL METALS (DISSOLVED) KE OBSERVATIONS / NOTES:	5	HCL 4° 4° HNO ₃ /	/ 4° C ° C ° C ° C ′ 4° C		Signature(s	40 ml Vial Qt. Amber Gla Qt. Amber Gla Qt. Amber Gla L PE L PE	ass ass	3 2 2	

Tt	Tetra	Tech	NUS,	Inc.
----	-------	------	------	------

Well No.: 6MW15

PROJECT PROJECT SITE:	T: T NUMBER:	NSB-N 73& DRM	,3	SWO		-		DATE: ATHER: ONNEL:	1-21 CO(D)	-00 VINDY SIMP		R 15°E
Initial Wa		6.79	1 15. @ 140 (ga) / (L)	hrs.	— ı · ··						1610 cted	
Time	Water Level feet below TOC	Volume mL	Flow Rate	Camba	Temp °C	рН	Sp Cond	DO mg/L	Turbidity NTU	Salinity ppt	Eh mV	Comments
1405	6.98	Û	261	400/ 400	6.0/	7.00	13.16	Ö	3.3	7.3.7	78	
1410	7.11		ノキガ		6.3	6.73	20.53	0	1,6	8.48	98	
1420	7,23			458/40D	5.9	6.59	18.60	0	0.5	7.29	110	·
1425	7.30			20 PSI	6.3	6.57	18.95		0,5	7,3/	113	
1435	7, 39				6.3	6.52	11.55	0	0.5	6.43	119	
1445	7.47				6.4	6.51	10.76	0	0.4	6.10	123	
1455	7.62				6.3	6.49	10.31	0	0,4	5.76		
1505	7.71				6.0	6.49	11.98	0	0.1	6.08	114	
1510	7.81				6.0	6.49	11.01	0	0	6.12	106	
1515	7.84	1			6.0	6.49	10,52	0	0	6.17	101	
1520	7.89	19840	· <i>V</i>	.1	6.1	6.49	10,98	0	0	5.99	100	END PHRACE
7												
			END	SAMPI	NOE	155	3	WL=	8.19			
						-						·
Water Qua	lity Meter (S/N)	:451					Notes:					\$
Control Bo	x Type (S/N):	QED		•								-
Turbidimet	er (S/N):	LA MOT	r E									

[] Domestic Well Data

[x] Monitoring Well Data

Other Well Type:

[] QA Sample Type:

Project Site Name:

Project No.:

SAMPLING DATA:

PURGE DATA:

Date: | - 20 - 00

Date: |- 20 - 00

Monitor Reading (ppm):

1900

Method:Low Flow/Bladder Pump

Method:Low Flow/Bladder Pump

Well Casing Diameter & Material

1-Commission **GROUNDWATER SAMPLE LOG SHEET**

S.C.

23,98

pН

7.06

Standard mS/cm

Temp.

Degrees C

NSB-NLON / DRMO

7363

Color

Visual

CLEAN

Page___ of ___ Sample ID No.: DRMO- 6MW25 GW-07 Sample Location: 6MW 25 Sampled By: , NEIL C.O.C. No.: 011900 07 Type of Sample: [X] Low Concentration [] High Concentration Turbidity Salinity NTU mg/l mV ppt 3.8 3,24 14.45 See Attached Low Flow Purge Data Sheet

Type: 2_PVC	for Pt	ırge Data	
Total Well Depth (TD): (3.60			
Static Water Level (WL): 190			
One Casing Volume(gal): i. (• * * * * * * * * * * * * * * * * * * *		
Start Purge (hrs): 1407		·	
End Purge (hrs): 1457			
Total Purge Time (min): SD	•		
Total Vol. Purged (gal): 4.9	ON		
	Preservative	Container Requirements	Collected
Analysis TCL VOLATILES (LOW-LEVEL)	HCL/4°C	40 ml Vial	Collected
TCL SEMIVOLATILES	4º C	Qt. Amber Glass	
TCL PEST/PCBs	4° C	Qt. Amber Glass	
TCL PAH	4°C	Qt. Amber Glass	
TAL METALS (TOTAL)	HNO ₃ / 4° C	L PE	-
TAL METALS (DISSOLVED)	HNO ₃ /4°€	LPE	- EW
OBSERVATIONS/NO(道			
FINAL HZO LEVEL =	7.19 Ft.	A TANK TO THE STATE OF STATE O	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
END SAMPLING @	1518		
•			
Circle if Applicable:		Signature(s):	
MINE II Whitenson	The state of the s	- The second of the second of	_
MS/MSD Duplicate ID No.:			\neg
		Forth rei)

Well No.: 6MW25

PROJEC PROJEC SITE:	T: T NUMBER:	NSB-N 736 DRM	.3	SWO		•		DATE: ATHER: ONNEL:	Clarisy,	1-20-00 Clarby, WINDY, LOW 20'S. SCOTT NEIL			
Initial Wa	een Depth: ter Level: e Volume=	6.90			hrs. Pump int		ump Type/Material: SVADAR/PVC ump Intake Depth; 10.0 TPVC Purge Time=(min)		Tide Cycle: ☐ High @		/520 cted		
Time	Water Level feet below TOC	Volume mL	Flow Rate	Pump Settings	Temp °C	рН	Sp Cond mS/cm	DO mg/L	Turbidity NTU	Salinity ppt	Eh mV	Comments	
1407	19.90			30R/30D 15/5I							7	PULLEING	
1412	6.96	355	355	1 1	7.4	7.20	13.73	4.05	10.3	14.29	-147	Suspinozo Bek	
1417	6.96	(7.5	7.14	23.87	3.30	3.6	14.38		FINES.	
1427	b.98				7:4	7.10	23.43	3.49	5.6	14.47	-145		
ムナフ	7.02				7.4	7.11	23.92	2.94	5.1	14.44	-143		
1432	7.04				7.5	7.10	23.46		5.1	14.44	-141		
1437	7:05				7.5	7.09	23.47	3.21	3,9	コノンム	-139		
442	7.06				7.5	7.08	23.99	3.19	3.8	14.46	-137		
447	7.08				7.5	7.08	23.99	3.45	3.4	14.48	-135		
452	7.10				7.4	7.08	24.02	3.26	4.2	14.47	-133	·	
757	7.11	$\overline{\checkmark}$	\downarrow	V	7.5	7.06	23.9¥		3.8	14.45	- 132	FND PURBING	
	BEGIN	MS Am	prine e	_ /5	ω. S	ample	_+1 DR	MO-6	muzs-	6W-C	٦.		
	END CA			1		•							
						1			_				
Water Qua	ality Meter (S/N)	: YS1	(1939	33R)		Est.	Notes:	•	A				
	x Type (S/N):		(1580				•		-				
Furbidime	• • • •	4AMOTT		39-12	198)	•	•						
	· · · · · ·	100	``	·			•					Page 2 of _	

Page___ of ___

	Project Site Name: Project No.:	NSB-NLOI 7363	N / DRMO			No.: DRMO- Location:	6MW 2 6MW 3	20	-
	[] Domestic Well Data[x] Monitoring Well Data[] Other Well Type:[] QA Sample Type:	1			C.O.C. I Type of [X] Lov		0119 ration	00-07	-
Secretaria de la companya de la comp	SAMPLING DATA:			- 		er samber i fakti ur S			
	Date: - 20 - 00	Color	pH S.C.	Temp.	Turbidity	DO	Eh	Sailnity	
	Time: / \$10 Method:Low Flow/Bladder Pump		Standard mS/cm		NTU C	mg/l	mV - 30%	ppt	
	PURGE DATA:	CIEAR	[6.90]33.75	9.8	8.3	. 1908 De 10 NOM 127 1 1	- 300	14-17	
		T		L				- 240,080	
	Date: - <u>10 - 00</u>	1							
	Method:Low Flow/Bladder Pump	1							ı
	Monitor Reading (ppm):	1			<u>.</u>				.
STATE OF THE STATE	Well Casing Diameter & Material		See Attached Lo		_	heet			
:	Type: PVC	1		for Purge	Data				
\$ 1.00 miles	Total Well Depth (TD): 78. ぢ	1							
	Static Water Level (WL): 5. 6]							
	One Casing Volume(gal): 11.9	1							
	Start Purge (hrs): 1411								
A STATE OF THE STA	End Purge (hrs): 1507	1							
	Total Purge Time (min): 56	1							
A an estiva	Total Vol. Purged (gal): 4.5	1							
A CONTRACTOR									
P .	SAMPLE COLLECTION INFORMA	JON:			10.000000000000000000000000000000000000		• <u></u>	34,030,00 36,0886	
	SAMPLE COLLECTION INFORMA Analysis	TION:	Preservative		Container R	equirements		Collected	
	Analysis TCL VOLATILES (LOW-LEVEL)	TION:	HCL/4°C		Container R	equirements 40 ml Vial		Collected 3	
	Analysis TCL VOLATILES (LOW-LEVEL) TCL SEMIVOLATILES	TION:	HCL / 4° C		Container Re	40 ml Vial Qt. Amber Gl		3	46.1
	Analysis TCL VOLATILES (LOW-LEVEL) TCL SEMIVOLATILES TCL PEST/PCBs	TION:	HCL/4°C 4°C 4°C		Container R	40 ml Viai Qt. Amber Gl Qt. Amber Gl	ass	Collected	
	Analysis TCL VOLATILES (LOW-LEVEL) TCL SEMIVOLATILES TCL PEST/PCBs TCL PAH	TION:	HCL/4° C 4° C 4° C 4° C		Container R	40 ml Vial Qt. Amber Gl Qt. Amber Gl Qt. Amber Gl	ass	3	
	Analysis TCL VOLATILES (LOW-LEVEL) TCL SEMIVOLATILES TCL PEST/PCBs TCL PAH TAL METALS (TOTAL)		HCL/4°C 4°C 4°C 4°C HNO ₃ /4°C			40 ml Vial Qt. Amber Gl Qt. Amber Gl Qt. Amber Gl L PE	ass	3	
	Analysis TCL VOLATILES (LOW-LEVEL) TCL SEMIVOLATILES TCL PEST/PCBs TCL PAH		HCL/4° C 4° C 4° C 4° C			40 ml Vial Qt. Amber Gl Qt. Amber Gl Qt. Amber Gl	ass	3	
	Analysis TCL VOLATILES (LOW-LEVEL) TCL SEMIVOLATILES TCL PEST/PCBs TCL PAH TAL METALS (TOTAL)		HCL/4°C 4°C 4°C 4°C HNO ₃ /4°C			40 ml Vial Qt. Amber Gl Qt. Amber Gl Qt. Amber Gl L PE	ass	3	
	Analysis TCL VOLATILES (LOW-LEVEL) TCL SEMIVOLATILES TCL PEST/PCBs TCL PAH TAL METALS (TOTAL)		HCL/4°C 4°C 4°C 4°C HNO ₃ /4°C			40 ml Vial Qt. Amber Gl Qt. Amber Gl Qt. Amber Gl L PE	ass	3	
	Analysis TCL VOLATILES (LOW-LEVEL) TCL SEMIVOLATILES TCL PEST/PCBs TCL PAH TAL METALS (TOTAL)		HCL/4°C 4°C 4°C 4°C HNO ₃ /4°C			40 ml Vial Qt. Amber Gl Qt. Amber Gl Qt. Amber Gl L PE	ass	3	
	Analysis TCL VOLATILES (LOW-LEVEL) TCL SEMIVOLATILES TCL PEST/PCBs TCL PAH TAL METALS (TOTAL)		HCL/4°C 4°C 4°C 4°C HNO ₃ /4°C			40 ml Vial Qt. Amber Gl Qt. Amber Gl Qt. Amber Gl L PE	ass	3	
	Analysis TCL VOLATILES (LOW-LEVEL) TCL SEMIVOLATILES TCL PEST/PCBs TCL PAH TAL METALS (TOTAL) THE METALS (TOTAL)		HCL/4°C 4°C 4°C 4°C HNO ₃ /4°C			40 ml Vial Qt. Amber Gl Qt. Amber Gl Qt. Amber Gl L PE	ass	3	
	Analysis TCL VOLATILES (LOW-LEVEL) TCL SEMIVOLATILES TCL PEST/PCBs TCL PAH TAL METALS (TOTAL) THE METALS (TOTAL) OBSERVATIONS / NOTES	ES	HCL/4°C 4°C 4°C 4°C HNO ₃ /4°C HNO ₃ /4°C			40 ml Viai Qt. Amber Gi Qt. Amber Gi Qt. Amber Gi L PE L PE	ass lass	3 2 3 1	
	Analysis TCL VOLATILES (LOW-LEVEL) TCL SEMIVOLATILES TCL PEST/PCBs TCL PAH TAL METALS (TOTAL) THE METALS (TOTAL) OBSERVATIONS / NOTES	ES	HCL/4°C 4°C 4°C 4°C HNO ₃ /4°C HNO ₃ /4°C	Alm		40 ml Viai Qt. Amber Gi Qt. Amber Gi Qt. Amber Gi L PE L PE	ass lass	3 2 3 1	
	Analysis TCL VOLATILES (LOW-LEVEL) TCL SEMIVOLATILES TCL PEST/PCBs TCL PAH TAL METALS (TOTAL) THE METALS (TOTAL)	ES	HCL/4°C 4°C 4°C 4°C HNO ₃ /4°C HNO ₃ /4°C	Arlm h		40 ml Viai Qt. Amber Gi Qt. Amber Gi Qt. Amber Gi L PE L PE	ass lass	3 2 3 1	
	Analysis TCL VOLATILES (LOW-LEVEL) TCL SEMIVOLATILES TCL PEST/PCBs TCL PAH TAL METALS (TOTAL) THE METALS (TOTAL) OBSERVATIONS / NOTES	ES	HCL/4°C 4°C 4°C 4°C HNO ₃ /4°C HNO ₃ /4°C	Alm up 3 of		40 ml Viai Qt. Amber Gi Qt. Amber Gi Qt. Amber Gi L PE L PE	ass lass	3 2 3 1	
	Analysis TCL VOLATILES (LOW-LEVEL) TCL SEMIVOLATILES TCL PEST/PCBs TCL PAH TAL METALS (TOTAL) THE METALS (TOTAL) OBSERVATIONS / NOTES	ES	HCL/4°C 4°C 4°C 4°C HNO ₃ /4°C HNO ₃ /4°C	Alm h		40 ml Viai Qt. Amber Gi Qt. Amber Gi Qt. Amber Gi L PE L PE	ass lass	3 2 3 1	
	Analysis TCL VOLATILES (LOW-LEVEL) TCL SEMIVOLATILES TCL PEST/PCBs TCL PAH TAL METALS (TOTAL) THE METALS (TOTAL) OBSERVATIONS / NOTES	ES	HCL/4°C 4°C 4°C 4°C HNO ₃ /4°C HNO ₃ /4°C	Alm h		40 ml Viai Qt. Amber Gi Qt. Amber Gi Qt. Amber Gi L PE L PE	ass lass	3 2 3 1	
	Analysis TCL VOLATILES (LOW-LEVEL) TCL SEMIVOLATILES TCL PEST/PCBs TCL PAH TAL METALS (TOTAL) THE METALS (TOTAL) OBSERVATIONS / NOTES	ES	HCL/4°C 4°C 4°C 4°C HNO ₃ /4°C HNO ₃ /4°C	Alm up		40 ml Viai Qt. Amber Gi Qt. Amber Gi Qt. Amber Gi L PE L PE	ass lass	3 2 3 1	
	Analysis TCL VOLATILES (LOW-LEVEL) TCL SEMIVOLATILES TCL PEST/PCBs TCL PAH TAL METALS (TOTAL) THE METALS (TOTAL) OBSERVATIONS / NOTES	ES	HCL/4°C 4°C 4°C HNO3/4°C HNO3/4°C HNO3/4°C	Alm m		40 ml Viai Qt. Amber Gl Qt. Amber Gl L PE L PE	ass lass	3 2 3 1	
	Analysis TCL VOLATILES (LOW-LEVEL) TCL SEMIVOLATILES TCL PEST/PCBs TCL PAH TAL METALS (TOTAL) THE METALS (TOTAL) OBSERVATIONS/NOTE:	ES FAZ.	HCL/4°C 4°C 4°C HNO3/4°C HNO3/4°C HNO3/4°C		YATEN TUBIN	40 ml Viai Qt. Amber Gl Qt. Amber Gl L PE L PE	ass lass	3 2 3 1	
	Analysis TCL VOLATILES (LOW-LEVEL) TCL SEMIVOLATILES TCL PEST/PCBs TCL PAH TAL METALS (TOTAL) THE METALS (TOTAL) OBSERVATIONS/NOTES Circle If Applicables	ES FAZ.	HCL/4°C 4°C 4°C HNO3/4°C HNO3/4°C HNO3/4°C		YATEN TUBIN	40 ml Viai Qt. Amber Gl Qt. Amber Gl L PE L PE	ass lass	3 2 3 1	

1	Æ	Totra	Tach	NHC	Inc
1		recia	. CCII	1103,	****

Well No.: 6MW2D

SITE:	T NUMBER:	736 DRM				•		ATHER: ONNEL:	R.	PMP	′ 20°F ≤0N	over(cf
Initial Wa	een Depth: uter Level:	5.61	1 78. • 140	O hrs.	Pump Ir	take De <u>pt</u>	al: B\ADDA' h: 73.0	TAC	Tide C			1520
Total Purg	je Volume= 45.2	5.6/	(gal) (L)	To	otal Purge	Time=		(min)			NOL ATIE	ciea
Time	Water Level feet below TOC	Volume mL	Flow Rate	Pump Settings	Temp *C	рН	Sp Cond mS/cm	DO mg/L	Turbidity	Salinity ppt	Eh m∨	Comments
1415	6.13	0	270	404/401)	9.6	6.88	33,49	0	16	20.84	-203	
1425	6.15	i i	305	50 PSI	9.6	6.82	32.94	()	12	20.71	-250	
1430	6,20		ı	35R/350	9.5	6.52		0	10	20.77	-270	
1440	6.28			50131		6.87	33.62	0	8.6	괴.27	-301	
1445	6,14				9.6	6.88		0	8.5	21.34	-306	
1450	6.03				9.7		33.67	0	8.5	21.00	-309	
455	6.18		1. 2			6.90		0	8.4	21.37	- 307	· · · · · · · · · · · · · · · · · · ·
500	6.14	Ψ				6.90		0	8.3	21.29	- 307	
1505	6.10	1780	4	<i>y</i>	9.8	6.90	33,75	0	8.3	21.17	- 308	END PUR
												, , , , , , , , , , , , , , , , , , ,
		381 184										
								<u></u>				
					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	<u> </u>	<u> </u>	·	<u> </u>			
	ality Meter (S/N)	QED					Notes:		<u>.</u>			
Control Bo Turbidime	ox Type (S/N): tor (S/N):	LA MOT	TC				•					

Project Site Name: Project No.:	NSB-NLC 7363	N/DRM	0			No.: DRMO- Location:	6MW6	5 GW-07
[] Domestic Well Data [x] Monitoring Well Data [] Other Well Type: [] QA Sample Type:					Sample C.O.C. Type of [X] Lo	d By:	く, べきで 01180 ration	<u> </u>
SAMPLING DATA:		610						
Date: - 9 - 00	Color	/ pH	s.c.	Temp.	Turbidity	DO	Eh	Salinity
Time: 0905	Visual	Standard	mS/cm	1 1	NTU	mg/l	m.V	ppt
Method:Low Flow/Bladder Pump	CLEAR	96	0.252	9.6	0.3	7.23	242	0.12
PURGE DATA:		(6N)		· · · · · · · · · · · · · · · · · · ·				
Date: - \$ - 00	<u> </u>					, · · ·		
	1							
Method:Low Flow/Bladder Pump	-							
Monitor Reading (ppm): 0.0	4							
Well Casing Diameter & Material	1	See Att	ached Lo	ow Flow Pu	rge Data S	Sheet		
Type: 2 PVC	<u> </u>			for Purge	Data			
Total Well Depth (TD): (とうら	1							
Static Water Level (WL): 9.15	1							
	1							
One Casing Volume(gal): 1.4	-							
Start Purge (hrs): 0807	4							
End Purge (hrs): 0902	1							
Total Purge Time (min): 55	_		•				•	
Total Vol. Purged (gal): ろ・4								
SAMPLE COLLECTION INFORMA	ATION:				and the second of the second			
Analysis	Mary Carlot Carlot - Anapolish Committee	Preser	vative		Container F	lequirements		Collected
TCL VOLATILES (LOW-LEVEL)	a company of the comp	НС	L/4°C		3	40 ml Vial		
TCL SEMIVOLATILES			4 ⁰ C		(2)	Qt. Amber G	lass	
TCL PEST/PCBs			4° C		(3)	Qt. Amber G	lass	
TCL PAH			4° C		(<u>a</u>)	Qt. Amber G	lass	
TAL METALS (TOTAL)		HNO	₃ /4°C		0	L PE		
TAL METALS (DISCOLVED)		HNO	₃ / 4 ⁰ 0			<u> </u>		$+e_{-}$
				1				
								<u> </u>
	A							
GBSERVALIONS (M.O.) INC.								
OBSERVATIONS AT COLUMN								
CESSEN/AUCIS FILE				a grantone y afficia a delita.		The second set of the second second		
GBSSN/AUCAS74(*)(** SMERR								
OBSERVATION CONTRACT								ord Residence of American State Control
CIPSERVATIONEY (LO) (SEE								
CIBSSERY/ALCAISTANO) (SSSEED)								
GRSERVATIONS/MOTES Circle It Applicable: MS/MSD Duplicate ID No					Signature		· · · · · · · · · · · · · · · · · · ·	And Annual Annua

Well No.: 6MW65

								DATE: ATHER: ONNEL:	1-18 BREEZY Scort	Clear	CO/d,	3-7°F
	en Depth:	8.6 9.75	1 18.				al: BUNDER		Tide C	ycle:	_	
Initial Wa			@ 08c				h: 14.0				Low @ Not Affe	
Total Purg	e Volume=	2.4(@ / L)	10	otal Purge	Time=	33	(min)	EZ Not Amorea			
Time	Water Level	Volume	Flow Rate	Pump	Temp	pН	Sp Cond	DO	Turbidity	Salinity	Eh	Comments
· · ·	feet below TOC	mL	mL/min	Settings	&C		mS/cm	mg/L	NTU	ppt	mV.	4
0807	9.75	_		45P							→	BEWIN PUKEING
0812	9.73	350	233	113	9.6	4.18	0.353	6.97	6.6	0.12	234	1145
8817	9.71				9.6	6.18	0.723	7.62		0.12	234	2330
4690	9.71				9.7	6.10	0.253	7.68	3.0	0.12	236	3495
0897	9.71				9.6	6.12	0.352	7.60	1.8	0.17	236	4660
0832	9.71				9.4	6.07	0.254	7.30	1.4	0.17	242	
0837	9.70				9.7	6.13	0.352	7.40	1.2	0.12	239	
4480	9.70				9.7	6.12	0.253	6.90	0.8	0.12	239	
0847	9.70				9.6	6.11	0.727	7.37	0.6	0.12	240	
0852	9.69				9.6	6.12	0.253	691	0.5	0.12	241	
0857	9.69				9.6	6-11	0.727	7.18	0.3	0.17	747	
0902	9.69	V	V	4	9.6	4.10	0.757	7.23	0.3	0.12	242	End purying
	Ý .	Begin s	ampling	099	<u> 50 - 50</u>		# DRN	10 - ON	W65-C	1W-07		
		End se	THE SAW	pling @	0939							
		(8)		`								-
											<u> </u>	
	ality Meter (S/N						Notes:					
Control Bo	x Type (S/N):								· · · · · · · · · · · · · · · · · · ·			
Turbidimet	ter (S/N):	La MOT	TE (OL	039 - 1	798)							Done O of

Page___ of ___ Sample ID No.: DRMO- 6MW6D Project Site Name: NSB-NLON / DRMO GW-07 Project No.: 7363 Sample Location: 6MW 6D Sampled By: Domestic Well Data C.O.C. No.: [x] Monitoring Well Data Type of Sample: Other Well Type: [X] Low Concentration [] High Concentration [] QA Sample Type: SAMPLING DATA: **Turbidity** DO Date: 1 - 15 - 00 Color Temp. Salinity 0915 Visual Standard mS/cm Degrees C NIU mg/1mV89 Method:Low Flow/Bladder Pump LEAR **PURGE DATA:** Date: | - 1 / - 00 Method:Low Flow/Bladder Pump Monitor Reading (ppm): Well Casing Diameter & Material See Attached Low Flow Purge Data Sheet Type: 6" PVC of EN BURE HOW for Purge Data Total Well Depth (TD): Static Water Level (WL): 🜖 One Casing Volume(gal): 54 Start Purge (hrs): End Purge (hrs): 60 Total Purge Time (min): Total Vol. Purged (gal): SAMPLE COLLECTION INFORMATION: Analysis Preservative **Container Requirements** Collected TCL VOLATILÉS (LOW-LEVEL) HCL/4°C 40 ml Vial Qt. Amber Glass TCL SEMIVOLATILES 4° C TCL PEST/PCBs 40 C Qt. Amber Glass TCL PAH 40 C Qt. Amber Glass TAL METALS (TOTAL) HNO₃ / 4° C L PE TAL METALS (DISSOLVED) KS HNO3/4° C -L-PE-OBSERVATIONS / NOTES: OPEN BORE HOLE 1.47 JAV/FT Circle if Applicable: Duplicate ID No.: MS/MSD

LOW FLOW PURGE DATA SHEET Well No.: 600 CD

PROJECT PROJECT SITE:	T: T NUMBER:	NSB-N 736 DRM	,3	swo		•		DATE: ATHER: ONNEL:		- 00 CUÜAA	-3°	f
	en Depth:	9,04	- 1 <u>46.</u>		1	ype/Mat <u>er</u> itake De <u>pl</u>		r/pc	Tide C	cycle:	Low @	
Total Purg	e Volume= 4	<u>. 8</u>	(ga) /44)	To	otal Purge	Time=	60	(min)	Not Affected			cted
Time	Water Level	Volume mL	Flow Rate	Pump Settings	Temp ^e C	рН	Sp Cond mS/cm	DO mg/L	Turbidity NTU	Salinity ppt	Eh m∨	Comments
0815	9,09	C	360	20/3/30/2	8.2	6,28	3.729	1,01	85	1,99	130,1	
USQU	9,06		300	# 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8.5	5.95	3,736	1.10	<i>60</i>	2,00	106	
0830	9.04				8.5	5.97	3,750	9.67	45	2,00	100	
0835	9.04			1	9,5	5.97	3763	7.40	45	2.00	97	
<u>0940</u>	7.03				86	5.95	3.772	3.3/	45	1.99	45	
0845	7.04				9.0	5.96	3.174	2-13	45	1.99	94	
0550	4.04	4			3,4	5.96	3.752	1.01	45	1.97	94	
0855	9.04				9/	5.96	3.73/	1.80	39	1.99	92	
0900	4,04				90	5.96	3.720	1.57	34	1.99	91	
0905	9.04	7			9.9	5.95	3.73/	1.44	23	1.98	90	
0910	9.04	18,002		V	B.9	5.95	3732	1.33	19	1.47	<i>E9</i>	END MIGH
			·									
7		7.								·		
									:			
					<i>\$</i>		ļ					
					<u> </u>		<u> </u>			<u></u>		
	ality Meter (S/N						Notes:		(CLÍ)		
	ox Type (S/N):	'aed					-					
Turbidime	ter (S/N):	La Mo	TE			•	-				· · · · · · · · · · · · · · · · · · ·	Page 7 of

I The second of the

Page ___ of ___ Sample ID No.: DRMO- 6MW95 Project Site Name: NSB-NLON / DRMO GW-07 Project No.: 7363 Sample Location: 6MW 95 Sampled By: [] Domestic Well Data C.O.C. No.: [x] Monitoring Well Data Type of Sample: [X] Low Concentration [] Other Well Type: [] High Concentration [] QA Sample Type: SAMPLING DATA: **Turbidity** DO Eh Salinity Date: 1 - 19 - 00 Color pН S.C. Temp. 0940 Visual Standard mS/cm Degrees C NIU mg/lmV ppt 0,2 Method:Low Flow/Bladder Pump 0,049 47 CAR 0.0 **PURGE DATA:** Date: | - 19 - 00 Method:Low Flow/Bladder Pump Monitor Reading (ppm): See Attached Low Flow Purge Data Sheet Well Casing Diameter & Material for Purge Data Type: PVC Total Well Depth (TD): Static Water Level (WL):ろ。 One Casing Volume(gal): 0745 Start Purge (hrs): End Purge (hrs): Total Purge Time (min): Total Vol. Purged (gal): SAMPLE COLLECTION INFORMATION: Analysis Preservative **Container Requirements** Collected TCL VOLATILES (LOW-LEVEL) HCL/4°C 40 ml Vial 6 TCL SEMIVOLATILES 40 C Qt. Amber Glass TCL PEST/PCBs 4° C Qt. Amber Glass TCL PAH 40 C Qt. Amber Glass HNO₃ / 4° C TAL METALS (TOTAL) LPE HNO-740 C TAL METALS (DISSOLVED) L-PE KES CULLECTEN DUF FUX JESERVATIONS AND LEGE CO(1) 10° F Sircle if Applicable: Signature(s): Duplicate ID No.: MEMST GWFD-011900

	Æ	Tetra	Tech	NUS,	Inc.
1				-	

Well No.: 6MW95

SITE: Well Scre	F NUMBER:	NSB-N 736 DRM 7.8 3.58	3	30 hrs.	Pump Ty Pump in	take De <u>pt</u>		DATE: ATHER: DNNEL: J PVC TPVC (min)	K, _:	I-19 - 00 7° F CLEAR R. SIMPSON Tide Cycle: High @ Low @ Not Affected		
Time	Water Level feet below TOC	Volume mL	Flow Rate	Pump Settings	Temp °C	рН	Sp Cond mS/cm	DO mg/L	Turbidity NTU	Salinity ppt	Eh mV	Comments
0750	3.61	0	325	30R/20D 10 PS 1	9.3	5.20	0.056	2.17	8,4	0.02	200	START PURSE
0755		ı	١	Ì	9.4	5.11	0.051	1.92	4.0	0.02	224	
0805					9.7	5.08	0.044	1,20	1.7	0.02	244	
080	V				9.5	5.07	0.049	1.64	1.0	0.02	25:3	
0815	3.64				9.6	5.10	0.049	1.58	0.0	0.02	260	
0820	3.62				9.6	5.07	0.049	1.19	0.5	0.02	270	
0825					9.6	5.10	0.049	0.83	0.4	0.02	273	
0830		$\overline{\mathbf{A}}$			9.5	5.10	0.049	0.70	0,2	0.02	278	
0835	-1	16,250	الأ	$\overline{\mathbf{V}}$	9.6	5,10	0.049	0,63	0.2	0.02	282	ENDINGS
							ļ					
									·			
		:			: ·							
		STAR		PLING		0837						
		END	SA	MIN	0	0918					7	
					٠.							
						19 12 14 14						
	ality Meter (S/N						Notes:	····				
	ox Type (S/N):	QED		• '.		· · · · · ·	•			· · · · · · · · · · · · · · · · · · ·		
Turbidime	ter (S/N):	La Mo	IT &		<u>.</u>		-					Page _2 of
· · · · · · · · · · · · · · · · · · ·		adhresso		300	, position)			1	e de la composition della comp	1.	raye <u>~</u> or

Page ___ of ___ GMW10S GW-07 Project Site Name: NSB-NLON / DRMO Sample ID No.: DRMO-Sample Location: 6MW 105 Project No.: 7363 Sampled By: C.O.C. No.: [] Domestic Well Data Type of Sample: [x] Monitoring Well Data [X] Low Concentration Other Well Type: [] High Concentration [] QA Sample Type: SAMPLING DATA: Date: 1 - 18 - 00 **Turbidity** Salinity S.C. Temp. Color +350 1315 Degrees C NTU mg/l mΨ Visual Standard mS/cm Method:Low Flow/Bladder Pump 11.18 10.9 0.1 0.47 264 USH PURGE DATA: Date: | - 18 - 00 Method:Low Flow/Bladder Pump Monitor Reading (ppm): O.O. See Attached Low Flow Purge Data Sheet Well Casing Diameter & Material for Purge Data Type: 2 PVC Total Well Depth (TD): Static Water Level (WL): 🔑 One Casing Volume(gal): /-6 Start Purge (hrs): ノみみつ 1310 End Purge (hrs): Total Purge Time (min): 50 Total Vol. Purged (gal): 🛛 🛵 SAMPLE COLLECTION INFORMATION: **Container Requirements** Collected Analysis Preservative 40 ml Vial TCL VOLATILES (LOW-LEVEL) HCL/4°C Qt. Amber Glass TCL SEMIVOLATILES 4º C Qt. Amber Glass TCL PEST/PCBs 4º C 4° C Qt. Amber Glass TCL PAH L PE HNO₃ / 4° C TAL METALS (TOTAL) HNO₃ / 4° C L PE TAL METALS (DISSOLVED) Suspended solids (Black) in Sample. Sulphur odor. Final HZD level = 4.03 Pt. Signature(s): **Duplicate ID No.:**

				_
飞	Tetra	Tech	NUS,	Inc.

Well No .: 6MW 105

PROJECT PROJECT SITE:	Γ: Γ NUMBER:	NSB-N 736 DRM	3	swo.				DATE: ATHER: DNNEL:	1-18 Sunny, Scott	1-18-00 Sunny, clear, windy, cold, 11-16° Scott NEIL			
Well Scre	en Depth: ter Level:	3.591		hrs.	Pump In	take De <u>pt</u>	al:BUNDE/ h: 9.0	TPVC	Tide C	ycle: X	Low @		
Total Purg	e Volume=		gal / L)	Т	tal Purge	Time=		(min)		☐ Not Affected			
Time	Water Level	Volume mL	Flow Rate	Pump Settings	Temp ^Q C	рН	Sp Cond	DO mg/L	Turbidity NTU	Salinity ppt	Eh m∨	Comments	
1220	3.59			50R/30D 15PX							-)	BEEN PURCOING	
1272	3.70	355	355	40440 B	10,8	7.28	10.44	0.45	2.9	5.92	-70	Buck perticles	
1230	3.74	7(24)	266		10.8	7.32	10.47	0.41		6.00		LET SULFUL DOCK	
1735	3.75				10.8	7.35	10.57	0.52	1.9	6.00	-187		
1240	3.77				10.8	7.35	10.76	0.48	0.5	6.11	306-		
1245	3.77				10.8	7.35			0.6	6.12	-971		
1950	3.78	12 12			10.8	7.35			0.4	6.16	-731		
1255	3,79				10.8	7.34	10.96	0.41	0.5	6.22	-239		
1300	3.79				10.8	7.34	11.10	0.43	0.3	6.25	-248		
1305	3.79				10.9	7.33	11.14	0.45	0.3	6.29	-257		
1310	3.81	V	→	4	10.9	7.33	11.18	0.47	0.1	6.34	-264	ALLING	
		200 in	sampling	6 1 3 1	- <0	mol.	EU V	MO -	6MW 10	S - GAL	-07.		
		End su	upling o	· /35	2.								
											11		
Water Qua	ality Meter (S/N): ys1	(193933	RS			Notes:		·	5.4 . 1 :			
Control Bo	x Type (S/N):	QED			· · · · · · · · · · · · · · · · · · ·		•						
Turbidime	ter (S/N):	La MC	TTE (0639 -	1298)			· · · · · · · · · · · · · · · · · · ·				Page 2 of	

							rage_	<u> </u>
Project Site Name:	NSB-NLO	N / DRM	IO	and the same of the same of	Sample ID	No.: DRMO-	6MW18	20 GW-07
Project No.:	7363	الا الحر ١١٠٠		• 1,77	Sample	Location:	6MW 10	<u> </u>
Floject No	7300			,	Sample		SE2	
[] Domestic Well Data					C.O.C. I		011800	1.07
						Sample:	<u> </u>	
[] Other Well Type:	_					w Concent	tration	
[] QA Sample Type:			 			h Concen		
() — (oumple 1) por					ua, ua ua e	a Calabara a ayar e		and the second
SAMPLING DATA:			1000000				el e Militali e e La projetje projet e e	
Date: - 6 - 00	Color	pH	s.c.	Temp.	Turbidity	00	Eh	Salinity
Time: 13.15	Visual		mS/cm	Degrees C	NTU	mg/l	m∇	ppt
Method:Low Flow/Bladder Pump	CLEAR	7.25	118.42	112.4	0.6	3.31	1-142	
PURGE DATA:	ti territorio de la compansión de la compa La compansión de la compa	er tankstöre kvit			en la			
Date: - 0 - 00	_		•					
Method:Low Flow/Bladder Pump	」 .							
Monitor Reading (ppm):								
Well Casing Diameter & Material		See At	tached L	ow Flow Pu	ırge Data S	heet		
Type: 2_PVC	1			for Purge	Data			
Total Well Depth (TD): 54.10								
Static Water Level (WL): 2.53								
One Casing Volume(gal): 8.4		. •				•		
Start Purge (hrs): 1210]					•		
End Purge (hrs): 1310	•							
Total Purge Time (min): 60	1							
Total Vol. Purged (gal): 4.8	7							
SAMPLE COLLECTION INFORMA	ATION:		e e e e e e e e e e e e e e e e e e e			a d e		1
Analysis	State of the Control of State of the Control of the	Prese	rvative		Container R	equirement		Collected
TCL VOLATILES (LOW-LEVEL)	The state of the second	Н	CL/4ºC			40 ml Vial		9
TCL SEMIVOLATILES			4° C			Qt. Amber 0	Blass	6
TCL PEST/PCBs	and the second of the second o		4° C			Qt. Amber (Glass	6
TCL PAH	er sammer i de la section de la company		4º C			Qt. Amber (Blass	6
TAL METALS (TOTAL)	maregizet i edi) ₃ / 4 ⁰ C			LPE	ar in a said in said a said	3
TAL METALS (DIGGOTVED)	>	-HNC) ₃ / 4º €			-LPE-	and the state of t	
The second of th	ing the suppression of				,			<u> </u>
						JUECTE		
	Company and the company of the company				or m	5/M51	<u>) </u>	
		<		 			****************	
							and the second second	1 1
angung aparament apara grap (3 topolar) (3 to the control of the c	4/4/F. 5/41/8083888888888		Paris Arrhendos		cecomos cíassos		763 1111 GUSTANA	
desired accounts a respect to the second of	HE LAND							
FIUSH	MT	-						
		•						
·]	•							
							·	
property and a property and a post of the proper					Signature	(s):		
MS/MSD) Duplicate ID N	o.:		terror en la la sece son d			1	0	
				••	17/-	1).	Lims	1:
- //					= /\ /			

Birthey of the Williams

H	Tetra	Tech	NUS,	Inc.

Well No .: 6MW 10 D

PROJECT: PROJECT NUMBER: 7363 DRMO				swo				DATE: ATHER: ONNEL:	1-18-00 COLD 10'F CLEAR K. SIMPSON				
				Pump Ty Pump In	take De <u>pt</u>	al:BUADEA h: 49.0	2/PVC TAC (min)	Tide Cycle: ☐ High @ ☐ ☐ Low @ ☐ ☐ Not Affected					
Time	Water Level feet below TOC	Volume mL	Flow Rate	Pump Settings	Temp [®] C	рН	Sp Cond mS/cm	DO mg/L	Turbidity NTU	Salinity ppt	Eh mV	Comments	
1220	2.48	0	325	30 D/30R 30 PS I	11.9	7.29	19,02	8.31	1.0	11.27	-93	START PURCE	
1225	2.49				12,1	7.14	19.08	11.06	1.6	11.28	-119		
1230	2,50				12.2	7.24	18.54	10.61	2.2	11.18	-155		
1240	2.52				12,3	7.25	18.72	11.24	0.9	10.98	-151		
1245	2.53				12,3	7.25	19.05	6.04	1.0	10.94	-145		
1255	2.54				12.4	7.24	18.90	4.51	1.1	11.17	-143		
1300	2.55				12.3	7.24	18.31	3,37	1,0	11.08	-141		
1305	2.57	Ψ			12.4	7.25	18.59	3.07	0.8	11.31	-139		
1310	2.57	18,000	4	4	12.4	7,25	18.42	3.31	0.6	11,22	-142	END PURGE	
								y 12					
			•										
		.											
	START		AMPLI		1314	•							
	END		AMPLIA	(m) (w)	1415								
Water Quality Meter (S/N): YSI							Notes:	MS	MSD	COLLE	CTED	·	
Control Bo	x Type (S/N):	QED	· · · · · · · · · · · · · · · · · · ·	·····					, di	· · .		· · · · · · · · · · · · · · · · · · ·	
Turbidimeter (S/N): LA MOTTE												Page 7 of	

etra Tech NUS, Inc. Page___ of ___ Sample ID No.: DRMO- 6 MW11 5 GW-07 NSB-NLON / DRMO Project Site Name: Sample Location: 6MW115 7363 Project No.: KEITH SIMPSON Sampled By: C.O.C. No.: 011900-07 1 Domestic Well Data Type of Sample: [x] Monitoring Well Data [X] Low Concentration Other Well Type: [] High Concentration [] QA Sample Type: SAMPLING DATA: DO Eh Salinity Date: 1-19 -00 S.C. Temp. Turbidity Color NTU mV mg/lVisual mS/cm Degrees C 326 Method:Low Flow/Bladder Pump CLEAR PURGE DATA: Date: | - | 9 - 00 Method:Low Flow/Bladder Pump Monitor Reading (ppm): See Attached Low Flow Purge Data Sheet Well Casing Diameter & Material for Purge Data Type: PVC Total Well Depth (TD): Static Water Level (WL): One Casing Volume(gal): Start Purge (hrs): End Purge (hrs): Total Purge Time (min): 3.2 Total Vol. Purged (gal): SAMPLE COLLECTION INFORMATION: Collected Container Requirements Analysis Preservative 40 ml Vial TCL VOLATILES (LOW-LEVEL) HCL/4°C Qt. Amber Glass TCL SEMIVOLATILES 4°.C Qt. Amber Glass 4° C TCL PEST/PCBs Qt. Amber Glass 40 C TCL PAH LPE HNO₃ / 4° C TAL METALS (TOTAL) HNO-/400-LPE TAL METALS (DISSOLVED) KES OBSERVATIONS/NOTES Signature(s): Circle if Applicable: **Duplicate ID No.:** MS/MSD

Tŧ	Tetra	Tech	NUS,	Inc.

Well No.: 6MW 115

PROJECT: PROJECT NUMBER: SITE: NSB-NLON, DRMO 7363 DRMO Well Screen Depth: 3.5 / 13.5 ft.				swo				DATE: ATHER: ONNEL:	1-19-00: 20'F SUNNY K. SIMPSON				
Well Screen Depth: 3.5 Initial Water Level: 3.24 Total Purge Volume= 3.2 (ga			<u> </u>	5 <u>5</u> hrs.		take De <u>pt</u>	h: 11.0 -		Tide Cycle: ☐ High @				
Time	Water Level	Volume mL	Flow Rate	Pump Settings	Temp [®] C	рН	Sp Cond	DO mg/L	Turbidity NTU	Salinity ppt	Eh mV	Comments	
325	3.63	0	240	45R/450	10.2	7.49	14.77	10.21	14		-260	START PUKIN	
330	3.64			20 PSI	10.2	7.49	13.03	7.63	8.1		-310		
335	3.66				10,0	7.49	12.56	7.11	4.5		-314		
340	3,65	i i			9.8	7.49	12.33	8.25	3.2	7.05	-3/4		
350	3.74				10.0	7.48	12,27	5,65	21	7.04	1		
355	3.80 3.80				9.8	7.49	12.35	3.60	2.0 2.0	7.07	-225 310		
500	3,81			-	9.9	7.48 7.49	12.33	7.21	1.8	7.08			
t05 t10	3.83	12,000	1	, l	9,9		12.31	5.77	1.6	7.06	-326		
110	5.0 -	13,000				** \				7 2 70			
		·		A Mary Alban V									
		STAR	t sal	wling	Q	1413							
		END	SAA	NPUNG	€ E								
		·									į		
								\$ 27.5 F					
					<u> </u>								
	ality Meter (S/N	7					Notes:			······································			
	x Type (S/N):			· · · · · · · · · · · · · · · · · · ·								·	
urbidimet	ter (S/N):	La Mo	ΠŁ									Page 2 c	

Page___ of ___ Sample ID No.: DRMO- 6MWIID GW-07 NSB-NLON / DRMO Project Site Name: Sample Location: 6MW [1] Project No.: 7363 Sampled By: - NEIL 11900-07 C.O.C. No.: [] Domestic Well Data Type of Sample: [x] Monitoring Well Data X Low Concentration Other Well Type: [] High Concentration [] QA Sample Type: SAMPLING DATA: Turbidity DO Eh Salinity Temp. S.C. Date: | - 19 - 00 Color mV mS/cm Degrees C NIU mg/l 1433 Visual Standard Time: -235 5.0 21.61 0.5 Method:Low Flow/Bladder Pump CLEAN 6.91 134.40 11.8 PURGE DATA: Date: 1 - 19 - 00 Method:Low Flow/Bladder Pump Monitor Reading (ppm): See Attached Low Flow Purge Data Sheet Well Casing Diameter & Material for Purge Data Type: 2_PVC Total Well Depth (TD): 85.0 Static Water Level (WL): 3.44 One Casing Volume(gal): 13. 1330 Start Purge (hrs): 1430 End Purge (hrs): Total Purge Time (min): Total Vol. Purged (gal): SAMPLE COLLECTION INFORMATION: Collected Container Requirements Analysis **Preservative** 40 ml Vial TCL VOLATILES (LOW-LEVEL) HCL/4°C 4° C Qt. Amber Glass TCL SEMIVOLATILES Qt. Amber Glass 40 C TCL PEST/PCBs Qt. Amber Glass 40 C TCL PAH HNO₃ / 4° C L PE TAL METALS (TOTAL) LPE HNO3740 C TAL METALS (DISSOLVED) FINAL HZO LEVEL = 4.11 FT. Signature(s): Circle if Applicable: MS/MSD Duplicate ID No.:

Tt	Tetra	Tech	NUS,	Inc

Well No .: 6MWIID

PROJECT: NSB-NLON, DRMO PROJECT NUMBER: 7363 DRMO					DATE: 1-19-00 WEATHER: CLEHR, WINGY, COLD, LOW 20'S. PERSONNEL: SCOTT NEIL								
	en Depth:	75.0 3.94	1 <u>8</u> S. @ 13:	0 ft. 30 hrs.			al: B\ADDA h; &2. (∑Low @ 1429				
Total Purg	e Volume=	.6	(Qa) / L)	To	otal Purge	Time=	60	(min)			Not Affe	cted	
Time	Water Level	Volume	Flow Rate	Pump	Temp	рН	Sp Cond		Turbidity		1	Comments	
	feet below TOC	mL	mL/min	Settings	.sC		mS/cm	mg/L	NTU	ppt	· mV	Beer	
1330	3.94			35 N/25 D 50 FSE							→	PUREING.	
1335	4.03	560	480		10.2	699	34.50	7.33	4.5	21.59	-()7		
1340	4.03				10.9	6.95	34.48	1.50	2.1	21.57	-181		
1345	4.54				11.0	6.94	34,49	7.37	0.9	21.65	-192		
1350	4.06				11.5	6.94	34.50	771	0,8	21.66	~>08		
1355	4.06				11.60	6.93	3451	ニグア	0.6	21.66	-221		
1400	4.07				114	6.93		4.78	o Ţ	21.69	-219		
1405	4.07				11.5	6.93	34.53	4.8	0.6	ントコー	- 330		
1410	4.09				11.4	6.90	34.59	4.77	0.7	21.74	-224	·	
1415	4.10				11.6	6.92	34.52	4.68	6.6	21.68	-998		
1420	4.09				11.7	6.92				21.66	-737	·	
14/25	4.10				11.7	6.91	34.42	4.89		21.63			
1430	4.10	4	\downarrow		11.8	6.91	34.40	5.04	0.5	21.61	-235	END PURCUNG	
										\$ ₁			
	BEBIN SA	mpung	Q 1433	: Sam A	E ID .	+ DRM	-6mw	11D - G1	n-07.				
·	END SAM	PLING (1454	<u> </u>									
:									·				
Water Qua	ality Meter (S/N): YS1	(193	933R))		Notes:	Attempt	ed to b	egin pw	ging at	1315 Novemer	
Control Bo	Control Box Type (S/N): <u>QED (15800)</u>						the tending invide the well casing was frozen.						
Turbidimeter (S/N): La NOTTE (0639 - 1298)							٠,	Uncloque	" ice i	n tubine	and (degan purging a 13	
Turbidimeter (S/N): La NOTTE (0639 - 1298) "Unclogged" ice in tubing and								Page 3 of 2					

APPENDIX F

CHAIN-OF-CUSTODY RECORDS

TETRA	TECH NUS	inc.

CTO 267
| NUMBER 0/1800-07 DRMO CHAIN OF CUSTODY

PAGE ___OF ____

PROJ	ECT NO:_	7363 SITE NAME: NSB-N	F	PROJEC	TMANA	GER AND	PHONE	NUMBER	1297	677	₹ LABO	YAOTANC A	(NAME A (CC47	ND CONTA	CT:	
CAMP	EDE (SI	7363 NSB-N	VON F	IELD OF	PERATION	ONS LEAD	DER AND	PHONE N	UMBER	<u> </u>	ADD	DEGG				
SAMI	LERS (SIC	· :		RE	177	SN	NPSUM	412	9215	<u> 131/</u>		2239	R	WIE	130	
			C	CARRIE	RWAYB	ILL NUME	BER				CITY	, STATE		5.1.A	· Credi	0
	,	- 0 .		ACC	410	ST	PICK	INER TYPE	=				ON	NJ	יושפנ	7 /
ーノ	-/	Stemas		ŀ				IC (P) or G			16/	6/	G/6			
STAN	IAIII	Sumps Batton	□ 14 day				PRESE USED	RVATIVE		/,;;;		///	///	200/		
24	hr.	48 hr. 🔲 72 hr. 🔲 7 day	14 Udy			_s						/_	(V)			
				<u>.</u>		Ä		HALTSE	DE VIEW		/_ /	〈レ〉				, , , , , , , , , , , , , , , , , , ,
2000						1 1 1	ی ا	HARRY	D ALL	(V)	\mathcal{Y}	6/			/	
Ŏ					~ ·	Ö	w.	·/ .oc	1/01			22	γ,	/ · /		
, ,				ž.	9 6	۳. د	4	/~/	/ W/							•
DATE	TIME	SAMPLE ID		MATRIX	GRAB (G) COMP (C)	No. OF CONTAINERS	//	MALIC)/ _/ ()						/ 0	COMMENTS
	4710	6-WTB-011800		AQ	6	2	2			<u>/_/</u>						TRIP BINAL
110	0/10	6-40 1 B-011000		5-W	G	10	3	2	2.	2	1					
-	0905	DRMO-CMW65 GW						2	2		;			34.5		AAA
	0915	DRNO-GMW6D GW		5W	6	10	3			2					RU	YMSD A VID
	1315	DRMO-CMWIDD GH	107	GW'	<i>G</i> -	30	9_	6	6	6	3	-	-		$\overline{}$	AMOD
1	1350	DRMO-GMWIOS GU	107	64	G	10	3	2	2.	2_	<u> </u>					
	1315														 	
												<u> </u>				
									A							
-	 															
-	-					-							1			
						1	-						 	1		
		4. A					-	-	-			1	+	1		
							ļ				ļ <u>.</u>					
						£		<u> </u>	1	<u> </u>						T 718.45
1. RE	LINQUISH	HED BY 1-15	. 4/1 /	PAT	α	TIME	10	1. RECE	EDBY					DAT	700	TIME 10
2. RE	LINQUISI	HED BY	you	DATE		TIME		2. RECEIV	/ED BY	· to		· · · · · · · · · · · · · · · · · · ·		DAT	É	TIME
3. RE	LINQUISI	HED BY	:	DATE		TIME		3. RECEIV	/ED BY			<u></u>		DAT	E	TIME
COM	MENTS		······································			1	L									
1 301											5004	EII E COD	V/\			3/99

TETRA TECH NUS, INC
TEXTA TECH NUC INC

CHAIN OF CUSTODY NUMBER 011900 07

PAGE ___OF ___

PROJECT NO: 7363 SITE NAME: NSS-NOIN	PROJEC	T MANA	AGER AND	PHONE	NUMBER	41) a	1197	LABO	LABORATORY NAME AND CONTACT:					
SAMPLERS (SIGNATURE)	FIELD O	PERATI	ONS LEAD	DER AND	PHONE N	UMBER	210/4	ADDI	ADDRESS					
	Rect	ni ·	SIMP	SON A	41292	1.913	/ .	2	2235 ROUTE 130					
						,		CITY	CITY, STATE					
100	\c	MI	57	140	LUP			Dľ	DAYTON NJ 09510					
71-17. Simplin-	÷				INER TYPI C (P) or GI			6/	6/6	-/6	12			
STANDARD AS hr. 72 hr. 7 day 14 day				PRESEI USED	RVATIVE			/. /	77		13m/		4	
VEAR 2000	MATRIX	GRAB (G) COMP (C)	No. OF CONTAINERS	THEOR	MM 198		198 X		A ST			COMMENTS		
19 0715 GUTB-011900	AQ	G-	2	Ž,								TRIP		
1 0000 GWFD - 011906	641	6	10	3	2	2	2				6	mugs nup		
0840 DRMO 6MW95 GW 07	6-W	6	10	3	2	2	2							
	GW	G	10	. 3	<u>)</u>	2.	2							
4 1433 DRMU 6MUID GW 07	GU/	6	10	3	2	_2_	2		- A				_	
120 1300 DRHO GMWIS GWO7	GW	G	10	3	2	2	. 2	l						
1510 DRMO GMW2D G407	GW	6	10	3	2	2	2	÷				*		
									*-					
										:				
													_	
								*					_	
						411				1.1				
						يززر ا		/ -						
1. RELINQUISHED BY 2. RELINQUISHED BY	DATE DATE		TIME TIME	'C	RECEIV	M. P.	Æ			<u>, 194</u>	DAT	7/00 TIME 1/00 TIME		
3. RELINQUISHED BY	DATE		TIME		3. RECEIV	•			DA					
COMMENTS				<u></u>	<u> </u>	_:				-	1			

CHAIN OF CUSTODY | NUMBER 012100-07

PAGE OF

ROJECT NO:	7363 SITE NAME:	FIELD	PERATI	DNS LEA	PHONE	412 9 PHONE N	21 87 UMBER	723	ADD	ACCUTEST ADDRESS					
(MFEENO (O	ional one)	KE	RWAYE	SIMP ILL NUM	SON .	412 9	21.51	3		2235 RIGHTE 130					
71-1	5 Simp	ACCUTE ST PICK-UP CONTAINER TYPE PLASTIC (P) or GLASS (G)							6/	6/6/6/P/USELU					
ANDARD TA	AT ☑					RVATIVE		/(3)		///		EUM/			
YEAR ACOU	SAMPLE ID	MATRIX	GRAB (G) COMP (C)	No. OF CONTAINERS	THEOL	MM 195	20/20/20							COMMENTS	
1 0700	GWTB-012/00	AG	G	2									1	1 Blan	
	DRMO GMWIS GWOZ	6w	G	10	3	2	3	2							
								<u> </u>	:						
_															
									:						
RELINQUIS	Ry 1. Flange	DATI 1.2	E 4.00	TIME OT/ TIME		1. RECEIV	de	A.	0	2		DATE	100	TIME	
RELINQUIS	HED BY	DATI		TIME	1	3. RECEIV						DATE		TIME	

APPENDIX G

DATA VALIDATION LETTERS AND LABORATORY DATA SHEETS

INTERNAL CORRESPONDENCE

EPC-00-014

TO:

MARK MENGEL

DATE: MARCH 29, 2000

FROM:

KATHY A. LANDKROHN

COPIES: DV FILE

SUBJECT:

ORGANIC DATA VALIDATION: VOA/PEST/PCB

CTO 267, NSB NEW LONDON

SDG E62315

SAMPLES:

13/Aqueous/

DRMO-6MW10D-GW-07 DRMO-6MW11S-GW-07

DRMO-6MW10S-GW-07 DRMO-6MW2D-GW-07 DRMO-6MW6S-GW-07

DRMO-6MW11D-GW-07 DRMO-6MW2S-GW-07

DRMO-6MW6D-GW-07 GWFD-011900

DRMO-6MW9S-GW-07

GWTB-011800

GWTB-011900

Overview

The sample set for the CTO 267, NSB New London, SDG E62315 consists of ten (10) aqueous environmental samples and two (2) trip blanks. Environmental samples were analyzed for volatile organic compounds and pesticides/polychlorinated biphenyls (PCBs). The trip blanks, designated GWTB, were analyzed for volatile organic compounds only. One field duplicate pair was included in the SDG: DRMO-6MW9S-GW-07 and GWFD-011900. The field crew designated sample DRMO-6MW10D-GW-07 for Matrix Spike/Matrix Spike Duplicate (MS/MSD) analysis.

The samples were collected by TetraTech NUS on January 18, 19, and 20, 2000 and analyzed by Accutest Laboratories. Analyses were conducted using the Contract Laboratory Program (CLP) Statement of Work (SOW) OLC02.1 analytical and reporting protocols.

The data were evaluated based on the following parameters:

- **Data Completeness**
- **Holding Times**
 - GC/MS Tuning
 - Calibration
 - Blanks
- Surrogate Spike Recoveries
- Field Duplicate Precision
- Internal Standards Performance
- Instrument Performance
- Compound Identification
- **Compound Quantitation**
- Tentatively Identified Compounds (TICs)

The asterisk (*) indicates that all quality control criteria were met for this parameter. Qualified (if applicable) analytical results are summarized in Appendix A. Results as reported by the laboratory are presented in Appendix B. Appendix C contains Region I worksheets, and Appendix D contains the documentation to support the findings as discussed in this data validation report.

EPC-00-014

MEMO TO:

M. MENGEL

DATE:

MARCH 29, 2000 - PAGE 2

CALIBRATIONS

The following tables summarize calibration non-compliances and corresponding actions:

IC

CC

Compound

01/26/00

01/27/00

Bromomethane

 $\overline{\mathbf{X}}$

Associated Samples: GWTB-011900

Calibration Actions:

Percent Relative Standard Deviation > 30%, Estimated (UJ) nondetected results.
 Percent Difference > 25%; Estimate (J) positive and (UJ) nondetected results.

Relative Response Factors < 0.05; Reject (R) nondetected results and estimated, (J)

positive.

SURROGATE RECOVERY

Surrogate recoveries of decachlorobiphenyl were reported above the upper quality control limit on one column in the pesticide/PCB fraction for samples GWFD-01190, DRMO-6MW9S-GW-07, DRMO-6MW11S-GW-07, DRMO-6MW11D-GW-07, DRMO-6MW6S-GW-07, and DRMO-6MW6D-GW-07. Surrogate recoveries reported for the second column of these same samples were reported within the quality control limit. Nondetected results were not qualified as a result of this noncompliance.

BLANK SPIKE RECOVERIES

The percent recovery (%R) of the Blank Spike analyzed on 02/04/2000 was less than the lower quality control limit for Endosulfan sulfate. Nondetected results for samples DRMO-6MW10D-GW-07, DRMO-6MW10S-GW-07, DRMO-6MW6D-GW-07, and DRMO-6MW6S-GW-07 were qualified as estimated, UJ.

ADDITIONAL COMMENTS

Positive results reported at concentrations below the CRQL were qualified as estimated, J.

The presence of methylene chloride in samples DRMO-6MW2S-GW-07 and DRMO-6MW6D-GW-07 is considered to be a laboratory contaminant by the data reviewer. The concentration in both samples is below the CRQL and no action was taken.

The %R of the Blank Spike analyzed on 02/07/2000 was greater than the upper quality control limit for Endrin. No action was taken based on this noncompliance.

The text of this report has been formulated to address only those problem areas affecting data quality.

OVERALL ASSESSMENT

Laboratory Performance: The laboratory was unable to obtain acceptable percent differences between initial and continuing calibration response factors for one volatile compound. Surrogate recoveries for six samples in the pesticide/PCB fraction was above the upper quality control limit. Blank spike recoveries for one pesticide compound were below the quality control limit for four samples.

Other Factors Affecting Data Quality: None.

MEMO TO:

M. MENGEL

DATE:

MARCH 29, 2000 - PAGE 3

EPC-00-014

The data for these analyses were reviewed with reference to the Region I EPA "Volatile and Semivolatile Data Validation Functional Guidelines - Part II" (12/96).

"I attest that the data referenced herein were validated according to the agreed upon validation criteria as specified in the NFESC Guidelines and the Quality Assurance Project Plan (QAPP)."

TetraTech NUS

Kathy A. Landkrohn Environmental Scientist

TetraTech NV6

Joseph A. Samchuck

Data Validation Quality Assurance Officer

Attachments:

- 1. Appendix A Qualified Analytical Results
- 2. Appendix B Results as Reported by the Laboratory
- 3. Appendix C Regional Worksheets
- 4. Appendix D Support Documentation

NSB NEW LONDON

SDG E62315

TABLE I. Summary of Tentatively Identified Volatile Compounds

TIC (DRMO-xxxxxx-GW-07) Ethene, chlorotrifluoro- Ethane, 1,2-dichloro-1,1,2-trifluoro Ethane, 1,1,2-trichloro-1,2,2-trifluoro	6MW10D X X X	6MW10S	6MW11D	6MW11S	6MW2D	
TIC (DRMO-xxxxxx-GW-07)	6MW2S	6MW6D	6MW6S	6MW9S	GWFD-011900	

APPENDIX A

QUALIFIED LABORATORY RESULTS

Page

CTO267 - NSB NEW LONDON

WATER DATA Accutest, NJ SDG: E62315

SAMPLE NUMBER: SAMPLE DATE: LABORATORY ID: QC_TYPE: % SOLIDS: UNITS: DRMO-6MW10D-GW-07 01/18/00 E62315-4 NORMAL 0.0 % UG/L DRMO-6MW10S-GW-07 01/18/00 E62315-5 NORMAL 0.0 % UG/L DRMO-6MW11D-GW-07 01/19/00 E62315-10 NORMAL 0.0 % UG/L DRMO-6MW11S-GW-07 01/19/00 E62315-9 NORMAL 0.0 % UG/L

FIELD DUPLICATE OF:						· · · · · · · · · · · · · · · · · · ·						
	RESULT	QUAL	CODE	RESULT	QUAL	CODE	RESULT	QUAL	CODE	RESULT	QUAL	CODE
VOLATILES									,			1
1,1,1-TRICHLOROETHANE	1	U		1	U		1	U		1	U	
1,1,2,2-TETRACHLOROETHANE	1	U		1	U		1	U	ļ	1	U	
1,1,2-TRICHLOROETHANE	1	U		1	U		1	U	-	1	U	
1,1-DICHLOROETHANE	11	U		0.9	J	Р	1	U		1	U	<u> </u>
1,1-DICHLOROETHENE	1	U		1 .	U		1	U		1	U	
1,2-DIBROMO-3-CHLOROPROPANE	1	U		1	U		1	U		1	U	
1,2-DIBROMOETHANE	1	U		1	U		1	U		1	U	
1,2-DICHLOROBENZENE	1	U		1	U		1	U		1	U	
1,2-DICHLOROETHANE	1	U	<u> </u>	1	U	· · ·	1	U .		1	U	
1,2-DICHLOROPROPANE	. 1	U		1	U		1	U	<u> </u>	<u> </u>	U	
1,3-DICHLOROBENZENE	1	U		1	U		1	U		1	U	
1,4-DICHLOROBENZENE	1	U		1	U		1	U		1	U	
2-BUTANONE	5	U		5	U		5	U		5	U	
2-HEXANONE	5	U		5	U		5	U		5	U	
4-METHYL-2-PENTANONE	5	U		5	U		5	U		5	U	
ACETONE	5	U	.	5	U		5	U		5	U	-
BENZENE	1	U		1	U		1	U	 	1	<u>U</u>	_
BROMOCHLOROMETHANE	1	U		1	U		1	U		1		
BROMODICHLOROMETHANE	1	U		1	U		1	U		[]	<u> </u>	+
BROMOFORM	1	U		1	U		1 .	U	 	<u> </u>	U	
BROMOMETHANE	1	U		1	U		1	U		<u> </u>		
CARBON DISULFIDE	1	U		1	U	_	1	U		<u> </u>	<u>u</u>	-
CARBON TETRACHLORIDE	1	U		1	U .		1	U		1	U	
CHLOROBENZENE	1	U		1	U	_	1	U	- -	1	U	
CHLOROETHANE	1	U		1	U		1	U	_	<u> </u>	U	
CHLOROFORM	1	U		1	U		1	U		1	U U	
CHLOROMETHANE	1	U		1	U		1	U ·		1		
CIS-1,2-DICHLOROETHENE	15			0.9	J	Р	1	U		1	U	
CIS-1,3-DICHLOROPROPENE	1	U		1	U		1	U		1	U	
DIBROMOCHLOROMETHANE	. 1	U		1	U		1	U	_	1	U	
ETHYLBENZENE	1	U		1	U		1	<u>U</u>		 	U	+
METHYLENE CHLORIDE	2	U		2	U.		2	U	+	2	U	+
STYRENE	, 1	U		1	<u> </u>		<u> 1</u>	. U		1		
TET ORCEE							1	<u> </u>	7	· · ·	<u> </u>	·

WATER DATA Accutest, NJ SDG: E62315

CAMPLE ANDED

SAMPLE NUMBER:
SAMPLE DATE:
LABORATORY ID:
QC_TYPE:
% SOLIDS:
UNITS:
FIELD DUPLICATE OF:

01/18/00 E62315-4 NORMAL 0.0 % UG/L

DRMO-6MW10D-GW-07

DRMO-6MW10S-GW-07 01/18/00 E62315-5 NORMAL 0.0 % UG/L DRMO-6MW11D-GW-07 01/19/00 E62315-10 NORMAL 0.0 % UG/L DRMO-6MW11S-GW-07 01/19/00 E62315-9 NORMAL 0.0 % UG/L

Page

							<u> </u>	1					
		RESULT	QUAL	CODE	RESULT	QUAL	CODE	RESULT	QUAL	CODE	RESULT	QUAL	CODE
	VOLATILES						٠.						
	TOLUENE	1 10 33	U		1	U		11	U		1	U	1
	TRANS-1,2-DICHLOROETHENE	1	U		1	U		1	U		1	U	
	TRANS-1,3-DICHLOROPROPENE	1	U		1	U		1	Ų		1	U	
	TRICHLOROETHENE	5			1	U		1	U		1	U	
,	VINYL CHLORIDE -	1	U		1	U		1	U		1	U	
	XYLENES, TOTAL	1 .	U		1	U		1	U		1	U	
								1					

2

3

Page

CTO267 - NSB NEW LONDON

WATER DATA Accutest, NJ SDG: E62315

SAMPLE NUMBER: SAMPLE DATE: LABORATORY ID: QC_TYPE: % SOLIDS: UNITS: FIELD DUPLICATE OF: DRMO-6MW2D-GW-07 01/20/00 E62315-12 NORMAL 0.0 % UG/L

DRMO-6MW2S-GW-07 01/20/00 E62315-11 NORMAL 0.0 % UG/L

DRMO-6MW6D-GW-07 01/18/00 E62315-3 NORMAL 0.0 % UG/L

DRMO-6MW6S-GW-07 01/18/00 E62315-2 NORMAL 0.0 % UG/L

	RESULT	QUAL	CODE	RESULT	QUAL	CODE	RESULT	QUAL	CODE	RESULT	QUAL	CODE
VOLATILES			, 7			ı	4	U	1	1	U	1
1,1,1-TRICHLOROETHANE	1	U		1	U	ļ	1		ļ	1	- U	+
1,1,2,2-TETRACHLOROETHANE	1	U		1	U		1	U U		1	- U	+
1,1,2-TRICHLOROETHANE	1	U		1	U	ļ	1 .	U	ļ	1	u	+
1,1-DICHLOROETHANE	0.6	J	P	1	U	<u> </u>	1	U		1	U	+
1,1-DICHLOROETHENE	. 1	U		1	U		1	<u>U</u>	<u> </u>	<u> </u>	- - - - - -	+
1,2-DIBROMO-3-CHLOROPROPANE	1	U		1	U	 	1	U	 	1	- U	+
1,2-DIBROMOETHANE	11	U		1	U	ļ	1	U	ļ	1	U U	+
1,2-DICHLOROBENZENE	1	U		1	U		1	<u>U</u>	 	<u> </u>	U	+
1,2-DICHLOROETHANE	1	U		1	U		1	U	 	 	U	+
1,2-DICHLOROPROPANE	1	U		1	U	.	1		 	 	U	+
1,3-DICHLOROBENZENE	1	U		1	U		1				U	+
1,4-DICHLOROBENZENE	11	U		1	U		1	<u> </u>	 	5	- u	-
2-BUTANONE	5	U		5	U		5	<u>U</u>		5	U	+
2-HEXANONE	5	U		5	U		5	U	 	<u> </u>	U U	+
4-METHYL-2-PENTANONE	5	U		5	U	ļ	5	U	ļ	5	 <u>U</u>	+
ACETONE	5	U		5	U		5	U		5	- U	
BENZENE	1	U		1	U		1	U		11	U	+-
BROMOCHLOROMETHANE	1	U		1	U		1	<u>U</u>	 	 	U	-
BROMODICHLOROMETHANE	1	U		1	U	<u> </u>	1	U		 	- U	-
BROMOFORM	1	U		1	U	<u> </u>	1	U		 	U	
BROMOMETHANE	1	U		1	U		1	U		 		
CARBON DISULFIDE	. 1	U		1	U		1	U	 	1		
CARBON TETRACHLORIDE	1	U		1	U		1	U	ļ	1	U	+-
CHLOROBENZENE	1	U		1	U		1	U		1!		
CHLOROETHANE	1	U		1	U		1	U		11	U	
CHLOROFORM	-1	U		1	U		1	U		<u> </u>	U	
CHLOROMETHANE	1	U		1	U		1	U		1	U	
CIS-1,2-DICHLOROETHENE	0.9	J	P	1	U		5		ļ		<u> </u>	
CIS-1,3-DICHLOROPROPENE	1	U		1	U		1	U		11	U	
DIBROMOCHLOROMETHANE	. 1	U		1	U		1	U		11	U	
ETHYLBENZENE	1	U		1	U		1	U		1	U	-
METHYLENE CHLORIDE	2	U		0.7	J	P	1	J	P	2	U	
	1	U		1	U		1	U		11	U	
TET NACHI ORDE	-		- ''	1			1	; U	3	11	U	1

CTO267 - NSB NEW LONDON WATER DATA

Accutest, NJ SDG: E62315

SAMPLE NUMBER: SAMPLE DATE: LABORATORY ID: QC_TYPE: % SOLIDS: UNITS:

FIELD DUPLICATE OF:

DRMO-6MW2D-GW-07 01/20/00 E62315-12 NORMAL 0.0 % UG/L DRMO-6MW2S-GW-07 01/20/00 E62315-11 NORMAL 0.0 % UG/L DRMO-6MW6D-GW-07 01/18/00 E62315-3 NORMAL 0.0 % UG/L DRMO-6MW6S-GW-07 01/18/00 E62315-2 NORMAL 0.0 % UG/L

RESULT 1	QUAL U	CODE	RESULT	QUAL	CODE	RESULT	QUAL	CODE	RESULT	QUAL	CODE
1	U	1		7					·	***************************************	
11	U	i							i		
			1	U		1	U	1	1	U.	
1	Ų		1	U		1	U		1	U	
1	Ų		1	U		1	U	1	1	U	d.
1	U		1	U		9			0.5	J	i P
0.8	J	Р	1	U		1	U		1	U	
1	U		1	U		1	U		1	U	
_	1 1 1 0.8 1	1 U 1 U 1 U 0.8 J 1 U	1 U 1 1 U 1 1 U 1 0.8 J P 1 U	1 U 1 1 U 1 1 U 1 0.8 J P 1 1 U 1	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 0.8 J P 1 U 1 U 1 U	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U 1 1 U 1 1 U 1 U 9 0.8 J P 1 U 1 1 U 1	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U		1 U 1 U 1 1 U 1 U 1 1 U 1 U 1 1 U 1 U 9 0.5 0.8 J P 1 U 1 U 1 1 U 1 U 1 U 1	

Page

WATER DATA Accutest, NJ

SDG: E62315

SAMPLE NUMBER:
SAMPLE DATE:
LABORATORY ID:
QC_TYPE:
% SOLIDS:
UNITS:
FIELD DUPLICATE OF:

DRMO-6MW9S-GW-07 01/19/00 E62315-8 NORMAL 0.0 % UG/L GWFD-011900 01/19/00 E62315-7 NORMAL 0.0 % UG/L DRMO-GMW9S-GW-07

GWTB-011800 01/18/00 E62315-1 NORMAL 0.0 % UG/L GWTB-011900 01/19/00 E62315-6 NORMAL 0.0 % UG/L

Page

FIELD DOPLICATE OF.				DRIVIC-	3,010 0 3 3 - 3 4	V -07	1					
	RESULT	QUAL	CODE	RESULT	QUAL	CODE	RESULT	QUAL	CODE	RESULT	QUAL	CODE
VOLATILES												
1,1,1-TRICHLOROETHANE	1	U		1	U		1	U		1	U	↓
1,1,2,2-TETRACHLOROETHANE	1	U	<u> </u>	1	U		1	U		1	U	
1,1,2-TRICHLOROETHANE	1	U	·	1	U		1	U	<u> </u>	1	U	
1,1-DICHLOROETHANE	1			1	U		1 .	U		1	U	
1,1-DICHLOROETHENE	1	U		1	U		1	U		1	U	<u> </u>
1,2-DIBROMO-3-CHLOROPROPANE	1	U]	1	U		1	U		1	<u>u</u> .	
1,2-DIBROMOETHANE	. 1	U		1	U		1	U	<u> </u>	1	U	
1,2-DICHLOROBENZENE	1	· U		1	U		1	U		1	U .	
1,2-DICHLOROETHANE	1	U	1	1	U		1	U		1	U	
1,2-DICHLOROPROPANE	1	U		1	U		1	U		1	U	
1,3-DICHLOROBENZENE	1	U		1	U		1	U		1	U	
1,4-DICHLOROBENZENE	1	U		1	U		1	U	<u> </u>	1	U	
2-BUTANONE	5	U		5	U		5	U		5	U	
2-HEXANONE	5	U		5	U		5	U	<u> </u>	5	U	
4-METHYL-2-PENTANONE	5	Ų		5	U		5	U	1	5	U	
ACETONE	5	U		5	U		5	U		5	U	
BENZENE	1	U		1	U		1	U		1	U	
BROMOCHLOROMETHANE	1	U		1	U		1	U		1	U	
BROMODICHLOROMETHANE	1	U		1	U		1	U		1	U	
BROMOFORM	1	U		1	U		1	U		1	U	
BROMOMETHANE	1	U		1	U		1	U		1	UJ	C
CARBON DISULFIDE	1	U		1	U		1	U		1	U	
CARBON TETRACHLORIDE	1	U		1	U		1	U	<u> </u>	1	U	
CHLOROBENZENE	1	U		1	U .	<u> </u>	1	U		1	U	
CHLOROETHANE	1	U		1	U		1	U		1	U	
CHLOROFORM	1	U		1	U		1	U		1	U	
CHLOROMETHANE	1	U		1	U		1	U		1	U	
CIS-1,2-DICHLOROETHENE	1			1	U		1	U		1	U	
CIS-1,3-DICHLOROPROPENE	1	Ü		1	U		1	U		1	U	
DIBROMOCHLOROMETHANE	1	U		1	U		1	U		1	U	
ETHYLBENZENE	1	U,		1	U		1	U		1	U	
METHYLENE CHLORIDE	2	U		2	U		2	U .		2	U	
STYRENE	1	U	T	1	U		1	U		.1	U	
TELONO LOROS NIE					ī	at year	1	ξ <u>ι</u>	1		IJ	·

.

WATER DATA Accutest, NJ SDG: E62315

SAMPLE NUMBER: SAMPLE DATE: LABORATORY ID: QC_TYPE: % SOLIDS: UNITS:

FIELD DUPLICATE OF:

DRMO-6MW9S-GW-07 01/19/00

E62315-8 NORMAL 0.0 % UG/L GWFD-011900 01/19/00 E62315-7 NORMAL 0.0 % UG/L

DRMO-GMW9S-GW-07

GWTB-011800 01/18/00 E62315-1 NORMAL 0:0 % UG/L GWTB-011900 01/19/00 E62315-6 NORMAL 0.0 % UG/L

			484	<u> </u>		S	I			1.7		
	RESULT	QUAL	CODE	RESULT	QUAL	CODE	RESULT	QUAL	CODE	RESULT	QUAL	CODE
VOLATILES												
TOLUENE	1	U		1	U	.	1	U		1	U	1
TRANS-1,2-DICHLOROETHENE	1	U		1	U		1	U		1	U	
TRANS-1,3-DICHLOROPROPENE	1	U		1	U,		1	U		1	U	15.0
TRICHLOROETHENE	1	U		1	U		1	U		1	U	1.80
VINYL CHLORIDE	1	U		1	Ū		1	U		1	U	98
XYLENES, TOTAL	. 1	U		1	U		1	U		1	U	28.
						-						

Page

WATER DATA Accutest, NJ

SDG: E62315

SAMPLE NUMBER: SAMPLE DATE: LABORATORY ID: QC_TYPE: % SOLIDS: UNITS:

FIELD DUPLICATE OF:

DRMO-6MW10D-GW-07 01/18/00 E62315-4 NORMAL 0.0 % UG/L DRMO-6MW10S-GW-07 01/18/00 E62315-5 NORMAL 0.0 % UG/L DRMO-6MW11D-GW-07 01/19/00 E62315-10 NORMAL 0.0 % UG/L DRMO-6MW11S-GW-07 01/19/00 E62315-9 NORMAL 0.0 % UG/L

Page

	RESULT	QUAL	CODE	RESULT	QUAL	CODE	RESULT	QUAL	CODE	RESULT	QUAL	CODI
PESTICIDES/PCBs												
4,4'-DDD	0.02	U		0.02	U		0.02	U		0.02	<u> </u>	ļ <u>.</u>
4,4'-DDE	0.02	U		0.02	U		0.02	U		0.02	U	
4,4'-DDT	0.02	U		0.02	U		0.02	U		0.02	U	
ALDRIN	0.01	U		0.01	U	L	0.01	U		0.01	U	<u> </u>
ALPHA-BHC	0.01	U		0.01	U		0.01	U	ļ	0.01	U	
ALPHA-CHLORDANE	0.01	U		0.01	U		0.01	U		0.01	U	<u> </u>
AROCLOR-1016	0.2	U		0.2	U		0.2	U		0.2	U	
AROCLOR-1221	0.4	U		0.4	U		0.4	U		0.4	U	<u> </u>
AROCLOR-1232	0.2	U		0.2	U		0.2	U		0.2	U	
AROCLOR-1242	0.2	U		0.2	U		0.2	U	<u> </u>	0.2	U	
AROCLOR-1248	0.2	U		0.2	U		0.2	U		0.2	, U	 _
AROCLOR-1254	0.2	U		0.2	U		0.2	U		0.2	U	
AROCLOR-1260	0.2	Ü		0.2	U		0.2	U		0.2	<u> </u>	
BETA-BHC	0.01	Ü		0.01	U		0.01	U		0.01	U	
DELTA-BHC	0.01	Ü		0.01	U		0.01	U		0.01	<u> U</u>	
DIELDRIN	0.02	U		0.02	U		0.02	U		0.02	U	
ENDOSULFAN I	0.01	U		0.01	U		0.01	U		0.01	<u>U</u>	
ENDOSULFAN II	0.02	U		0.02	· U		0.02	U		.0.02	U	
ENDOSULFAN SULFATE	0.02	UJ	E	0.02	UJ	E	0.02	· U		0.02	U	
ENDRIN	0.02	U		0.02	U		0.02	U		0.02	U	J
ENDRIN ALDEHYDE	0.02	U		0.02	U		0.02	U		0.02	U	
ENDRIN KETONE	0.02	U		0.02	U		0.02	U	<u></u>	0.02	U	
GAMMA-BHC (LINDANE)	0.01	U		0.01	U		0.01	U		0.01	U	
GAMMA-CHLORDANE	0.01	U		0.01	U		0.01	U		0.01	U	
HEPTACHLOR	0.01	U		0.01	U		0.01	U		0.01	U	
HEPTACHLOR EPOXIDE	0.01	U		0.01	U		0.01	U		0.01	U	
METHOXYCHLOR	0.1	U		0.1	U		0.1	U		0.1	U	
TOXAPHENE	1	U	1	1	U		1	U		1	U	

.

Page

2

CTO267 - NSB NEW LONDON WATER DATA Accutest, NJ SDG: E62315

SAMPLE NUMBER: SAMPLE DATE: LABORATORY ID:

QC_TYPE: % SOLIDS:

UNITS:

FIELD DUPLICATE OF:

DRMO-6MW2D-GW-07 01/20/00 E62315-12 NORMAL 0.0 % UG/L DRMO-6MW2S-GW-07 01/20/00 E62315-11 NORMAL 0.0 % UG/L DRMO-6MW6D-GW-07 01/18/00 E62315-3 NORMAL 0.0 % UG/L DRMO-6MW6S-GW-07 01/18/00 E62315-2 NORMAL 0.0 % UG/L

	RESULT	QUAL	CODE	RESULT	QUAL	CODE	RESULT	QUAL	CODE	RESULT	QUAL	CODE
PESTICIDES/PCBs							<u> </u>	GOAL	OODL	INCOULT	QUAL	CODE
4,4'-DDD	0.021	U	1	0.021	U	1	0.021	U	1	0.02	U	1
4,4'-DDE	0.021	U		0.021	U		0.021	U		0.02	U	1
4,4'-DDT	0.021	U		0.021	U		0.021	U		0.02	U	1 6
ALDRIN	0.01	U		0.01	U		0.01	U		0.01	U	7.
ALPHA-BHC	0.01	U		0.01	U		0.01	U		0.01	U	1
ALPHA-CHLORDANE	0.01	U		0.01	U		0.01	U		0.01	U	
AROCLOR-1016	0.21	U,		0.21	U		0.21	U		0.2	U	
AROCLOR-1221	0.41	U		0.42	U		0.42	U		0.4	U	
AROCLOR-1232	0.21	U		0.21	Ų		0.21	U		0.2	U	100
AROCLOR-1242	0.21	U		0.21	U		0.21	U		0.2	U	T :
AROCLOR-1248	0.21	U		0.21	U		0.21	U :		0.2	U	
AROCLOR-1254	0.21	U		0.21	U		0.21	U		0.2	U	
AROCLOR-1260	0.21	U		0.21	U		0.21	U		0.2	U	
BETA-BHC	0.01	U		0.01	U		0.01	U		0.01	U	
DELTA-BHC	0.01	U		0.01	U		0.01	U		0.01	U	
DIELDRIN	0.021	U		0.021	U		0.021	U		0.02	U	
ENDOSULFAN I	0.01	Ü		0.01	U		0.01	U		0.01	U	
ENDOSULFAN II	0.021	U		0.021	U		0.021	U		0.02	U	
ENDOSULFAN SULFATE	0.021	U		0.021	U		0.021	UJ	Е	0.02	UJ	E
ENDRIN	0.021	U		0.021	U		0.021	U		0.02	U	1
ENDRIN ALDEHYDE	0.021	U		0.021	Ú		0.021	U		0.02	U	<u> </u>
ENDRIN KETONE	0.021	U		0.021	U		0.021	U		0.02	U	
GAMMA-BHC (LINDANE)	0.01	U		0.01	U		0.01	U		0.01	U	
GAMMA-CHLORDANE	0.01	U		0.01	U		0.01	U		0.01	U	†
HEPTACHLOR	0.01	U		0.01	U		0.01	U		0.01	U	
HEPTACHLOR EPOXIDE	0.01	U		0.01	U		0.01	U		0.01	Ū	
METHOXYCHLOR	0.1	U		0.1	U		0.1	U		0.1	U	
TOXAPHENE	1	Ū		1	U		1	U		1	U	

WATER DATA Accutest, NJ

SDG: E62315

SAMPLE NUMBER: SAMPLE DATE: LABORATORY ID: QC_TYPE: % SOLIDS:

DRMO-6MW9S-GW-07 01/19/00 E62315-8 NORMAL 0.0 % UG/I

GWFD-011900 01/19/00 E62315-7 NORMAL 0.0 % UG/L

100.0 %

.11

Page

100.0 %

11

UNITS: FIELD DUPLICATE OF:	UG/L			UG/L DRMO-C	GMW9S-GV	V-07						
	RESULT	QUAL	CODER	ESULT	QUAL	CODE	RESULT	QUAL	CODE	RESULT	QUAL	CODE
PESTICIDES/PCBs												
4,4'-DDD	0.02	U		0.021	U						 	
4,4'-DDE	0.02	U	0	.021	U						·	
4,4'-DDT	0.02	U		.021	U				1			
ALDRIN	0.01	U	0).01	U							
ALPHA-BHC	0.01	U).01	U							
ALPHA-CHLORDANE	0.01	U	0	0.01	U						•	
AROCLOR-1016	0.2	U	0).21	U				l			
AROCLOR-1221	. 0.4	U	0).42	U							
AROCLOR-1232	0.2	U).21	U							
AROCLOR-1242	0.2	U	0).21	U							
AROCLOR-1248	0.2	U).21	U							
AROCLOR-1254	0.2	U	0).21	U							
AROCLOR-1260	0.2	U).21	U							
BETA-BHC	0.01	U		0.01	U				<u> </u>			
DELTA-BHC	0.01	U).01	U							
DIELDRIN	0.02	U		0.021	U						,	
ENDOSULFAN I	0.01	U).01	U							<u> </u>
ENDOSULFAN II	0.02	U	C	0.021	U							
ENDOSULFAN SULFATE	0.02	U		0.021	U ·							
ENDRIN	0.02	Ū	0).021	U						,	<u> </u>
ENDRIN ALDEHYDE	0.02	U	C	0.021	U		<u> </u>				· · · · · · · · · · · · · · · · · · ·	
ENDRIN KETONE	0.02	U		0.021	U							
GAMMA-BHC (LINDANE)	0.01	U).01	U				<u> </u>			
GAMMA-CHLORDANE	0.01	U		0.01	Ų		-					
HEPTACHLOR	0.01	U .	C	0.01	U							
HEPTACHLOR EPOXIDE	0.01	U	C).01	U				l			<u> </u>
METHOXYCHLOR	0.1	U).1	Ú							
TOXAPHENE	1	U	1		U					<u> </u>		

13

Tetra Tech NUS

INTERNAL CORRESPONDENCE

TO:

MARK MENGEL

DATE: MARCH 30, 2000

FROM:

LINDA KARSONOVICH

COPIES: DV FILE

SUBJECT:

ORGANIC DATA VALIDATION: VOA/PEST/PCB

CTO 267, NSB NEW LONDON

SDG E62512

SAMPLES:

2/Aqueous/

DRMO-6MW1S-GW-07

GWTB-012100

Overview

The sample set for the CTO 267, NSB New London, SDG E62512 consists of one (1) aqueous environmental sample and in (1) trip blank. All samples were analyzed for volatile organic compounds. The environmental sample was also analyzed for pesticides/PCBs. No field duplicate pairs were included in the SDG.

The samples were collected by TetraTech NUS on January 21, 2000 and were analyzed by Accutest. Analyses were conducted using CLP SOW OLC02.1 analytical and reporting protocols.

The data were evaluated based on the following parameters:

- Data Completeness
- Holding Times
 - GC/MS Tuning
 - Calibration
 - Blanks
 - Surrogate Spike Recoveries
- Internal Standards Performance
- instrument Performance
- Compound Identification
- Compound Quantitation
- Detection Limits

The asterisk (*) indicates that all quality control criteria were met for this parameter. Qualified (if applicable) analytical results are summarized in Appendix A. Results as reported by the laboratory are presented in Appendix B. Appendix C contains Region I worksheets, and Appendix D contains the documentation to support the findings as discussed in this data validation report. The attached Table I summarizes the validation qualifications which were based on the following information:

CALIBRATIONS

The following tables summarize calibration noncompliances and corresponding actions:

IC 01/26/00 CC

Bromomethane

Compound

01/27/00

Associated Samples:

All

Calibration Actions:

Percent Difference > 25%; Estimate (J) positive and (UJ) nondetected results.

SURROGATE

Surrogate recovery of decachlorobiphenyl exceeded the upper quality control limit on one analytical column in sample DRMO-6MW1S-GW-07. No qualifiers were assigned on this basis since the other was compliant and no target compounds were detected in the sample.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE

Matrix spike recovery of Endrin exceeded the upper quality control limit. No qualifiers were assigned on this basis.

BLANK SPIKE RESULTS

Blank spike recovery of Endrin exceeded the upper quality control limit. No qualifiers were assigned on this basis.

ADDITIONAL COMMENTS

The text of this report has been formulated to address only those problem areas affecting data quality.

OVERALL ASSESSMENT

Laboratory Performance: Bromomethane exceeded the continuing calibration %D criteria.

Other Factors Affecting Data Quality: None.

The data for these analyses were reviewed with reference to the Region I EPA "Volatile and Semivolatile Data Validation Functional Guidelines - Part II" (12/96).

"I attest that the data referenced herein were validated according to the agreed upon validation criteria as specified in the NFESC Guidelines and the Quality Assurance Project Plan (QAPP)."

TetraTech NUS

Linda Karsonovich Chemist/Data Validator

TetraTech NUS

Joseph A. Samchuck Data Validation Quality Assurance Officer

Attachments:

- 1. Appendix A Qualified Analytical Results
- 2. Appendix B Results as Reported by the Laboratory
- 3. Appendix C Regional Worksheets
- 4. Appendix D Support Documentation

NEW LONDON NSB

SDG E62512

TABLE II. Summary of Tentatively Identified Volatile Compounds

TIC

No TICs were reported.

Qualifier Codes:

A = Lab Blank Contamination

B = Field Blank Contamination

C = Calibration (i.e., % RSDs, %Ds, ICVs, CCVs, RPDs, RRFs, etc.) Noncompliance

D = MS/MSD Noncompliance

E = LCS/LCSD Noncompliance

F = Lab Duplicate Imprecision

G = Field Duplicate Imprecision

H = Holding Time Exceedance

| = ICP Serial Dilution Noncompliance

J = GFAA PDS - GFAA MSA's r < 0.995

K = ICP Interference - include ICSAB % R's

L = Instrument Calibration Range Exceedance

M = Sample Preservation

N = Internal Standard Noncompliance

O = Poor Instrument Performance (i.e., base-time drifting)

P = Uncertainty near detection limit (< 2 x IDL for inorganics and <CRQL for organics)

Q = Other problems (can encompass a number of issues)

R = Surrogates Recovery Noncompliance

S = Pesticide/PCB Resolution

T = % Breakdown Noncompliance for DDT and Endrin

U = Pest/PCB D% between columns for positive results

V = Non-linear calibrations, tuning r < 0.995 (correlation coefficient)</p>

W = EMPC result

X = Signal to noise response drop

Y = % Solid content is less than 30%

APPENDIX A

QUALIFIED LABORATORY RESULTS

WATER DATA Accutest, NJ

SDG: E62512

SAMPLE NUMBER: SAMPLE DATE: LABORATORY ID: QC_TYPE: % SOLIDS: UNITS: FIELD DUPLICATE OF: DRMO-6MW1S-GW-07 01/21/00 E62512-2 NORMAL 0.0 % UG/L

GWTB-012100 01/21/00 E62512-1 NORMAL 0.0 % UG/L

100.0 %

100.0 %

11

Page

FIELD DUPLICATE OF.	<u> </u>						<u> </u>					
	RESULT	QUAL	CODE	RESULT	- QUAL	CODE	RESULT	QUAL	CODE	RESULT	QUAL	CODE
VOLATILES												
1,1,1-TRICHLOROETHANE	. 1	U	 	1	U							
1,1,2,2-TETRACHLOROETHANE	1	U	ļ	1	U						,	<u> </u>
1,1,2-TRICHLOROETHANE	11	U		1	U							
1,1-DICHLOROETHANE	1	U	ļ	1	U							
1,1-DICHLOROETHENE	1	U		1	U							ļ
1,2-DIBROMO-3-CHLOROPROPANE	1	<u> </u>	<u> </u>	1	U	1						ļ
1,2-DIBROMOETHANE	1	Ü		1	U		<u> </u>					
1,2-DICHLOROBENZENE	11	U		1	U							<u> </u>
1,2-DICHLOROETHANE	11	U		1	U							
1,2-DICHLOROPROPANE	11	U		1	U			:				
1,3-DICHLOROBENZENE	1	U	ļ.,,,	1	U				ļ			
1,4-DICHLOROBENZENE	11	U		1	U	<u> </u>						
2-BUTANONE	5	U		5	U							<u> </u>
2-HEXANONE	5	U		5	U							
4-METHYL-2-PENTANONE	5	U		5	U		<u> </u>					
ACETONE	5	U		5	U.							1
BENZENE	1	U		1	U							
BROMOCHLOROMETHANE	1	U		1	U							
BROMODICHLOROMETHANE	1	U		1	U							
BROMOFORM	1	U		1	U							
BROMOMETHANE	1	UJ	С	1	UJ	С						
CARBON DISULFIDE	1	U		1	U							
CARBON TETRACHLORIDE	1	U		1	U							1
CHLOROBENZENE	1	U		1	U							
CHLOROETHANE	1	U		1	U						***************************************	
CHLOROFORM	1	U		1	U		<u> </u>					
CHLOROMETHANE	1	U		1	U							
CIS-1,2-DICHLOROETHENE	1	U		1	U						····	<u> </u>
CIS-1,3-DICHLOROPROPENE	1	U		1	U							<u> </u>
DIBROMOCHLOROMETHANE	1	U		1	U							
ETHYLBENZENE	1	U		1	U							
METHYLENE CHLORIDE	2	U		2	U							
STYRENE	1	U	T	1	U							
TETRACUI ODOETHENE	1	U	1	1	U							

WATER DATA Accutest, NJ SDG: E62512

SAMPLE NUMBER: SAMPLE DATE: LABORATORY ID: QC_TYPE: % SOLIDS: UNITS:

01/21/00 E62512-2 NORMAL 0.0 % UG/L

DRMO-6MW1S-GW-07

GWTB-012100 01/21/00 E62512-1 NORMAL 0.0 % UG/L

11

100.0 %

100.0 %

Page

FIELD DUPLICATE OF:		•								l		
	RESULT	QUAL	CODE	RESULT	QUAL	CODE	RESULT	QUAL	CODE	RESULT	QUAL	CODE
VOLATILES												1
TOLUENE	1	U		1	<u> </u>				<u> </u>			
TRANS-1,2-DICHLOROETHENE	11	U		1	U					 		<u> </u>
TRANS-1,3-DICHLOROPROPENE	1	U		1	U					<u> </u>		
TRICHLOROETHENE	1	U		1	U					ļ		
VINYL CHLORIDE	1	U		1	U							
XYLENES, TOTAL	1	บ		1	U							

WATER DATA Accutest, NJ SDG: E62512

SAMPLE NUMBER:

SAMPLE DATE:

% SOLIDS:

UNITS:

LABORATORY ID: QC_TYPE:

DRMO-6MW1S-GW-07

01/21/00 E62512-2 NORMAL

0.0 % UG/L

100.0 %

11

11

100.0 %

Page

100.0 %

11

FIELD DUPLICATE OF:

	RESULT	QUAL	CODE	RESULT	QUAL	CODE	RESULT	QUAL	CODE	RESULT	QUAL	CODE
PESTICIDES/PCBs												
4,4'-DDD	0.02	U										
4,4'-DDE	0.02	U										
4,4'-DDT	0.02	U										
ALDRIN	0.01	U										
ALPHA-BHC	0.01	U							<u> </u>			
ALPHA-CHLORDANE	0.01	U										
AROCLOR-1016	0.2	U										
AROCLOR-1221	0.4	U										
AROCLOR-1232	0.2	U										
AROCLOR-1242	0.2	U										
AROCLOR-1248	0.2	U										<u> </u>
AROCLOR-1254	0.2	U							<u> </u>			
AROCLOR-1260	0.2	U										<u> </u>
BETA-BHC	0.01	U						·				
DELTA-BHC	0.01	U										
DIELDRIN	0.02	U										
ENDOSULFAN I	0.01	U										
ENDOSULFAN II	0.02	U.										
ENDOSULFAN SULFATE	0.02	U										
ENDRIN -	0.02	U										
ENDRIN ALDEHYDE	0.02	U	•									<u> </u>
ENDRIN KETONE	0.02	U.										
GAMMA-BHC (LINDANE)	0.01	U					•					
GAMMA-CHLORDANE	0.01	U										
HEPTACHLOR	0.01	U										
HEPTACHLOR EPOXIDE	0.01	U										
METHOXYCHLOR	0.1	U					-					
TOXAPHENE	1	U						-				

Tetra Tech NUS

INTERNAL CORRESPONDENCE

TO:

M. MENGEL

DATE:

APRIL 6, 2000

FROM:

GRETCHEN PHIPPS

COPIES:

DV FILE

SUBJECT:

ORGANIC DATA VALIDATION - SEMIVOLATILES AND PAHS

CTO 267 - NSB NEW LONDON

SDG - E62315A

SAMPLES:

10/Aqueous/

DRMO-GWMW10D-GW-07 DRMO-GWMW11D-GW-07 DRMO-GWMW2D-GW-07

DRMO-GWMW10S-GW-07 DRMO-GWMW11S-GW-07 DRMO-GWMW2S-GW-07

DRMO-GWMW6D-GW-07

DRMO-GWMW6S-GW-07

DRMO-GWMW9S-GW-07

GWFD-011900

Overview

The sample set for CTO 267, NSB New London, SDG E62315A, consists of ten (10) aqueous environmental samples. One (1) field duplicate pair (DRMO-GWMW9S-GW-07 / GWFD-011900) was included within this SDG.

All samples were analyzed for target compound list (TAL) semivolatile organics and polynuclear aromatic hydrocarbons (PAHs). The samples were collected by Tetra Tech NUS on January 18-20, 2000 and analyzed by Accutest Laboratories under Naval Facilities Engineering Service Center (NFESC) Quality Assurance/Quality Control (QA/QC) criteria. Semivolatile analyses were conducted using SW 846 method 8270C. PAH analyses were conducted using SW 846 method 8310.

The data was evaluated based on the following parameters:

- Data Completeness
 - Holding Times
- GC/MS Tuning and System Performance
 - Initial/Continuing Calibrations
- Laboratory Method Blanks
 - Surrogate Spike Recoveries
 - Matrix Spike/Matrix Spike Duplicate Results
 - Blank Spike Results
 - Internal Standard Performance
- Field Duplicate Results
 - Compound Identification
- Compound Quanitation
 - Detection Limits
 - All quality control criteria were met for this parameter.

MEMO TO:

M. MENGEL - PAGE 2

DATE:

APRIL 6, 2000

Initial/Continuing Calibrations

The initial calibration on January 4, 2000 contained a %RSD for hexachlorocyclopentadiene that was >30% quality control limit affecting the samples analyzed on instrument GCMSR. The nondetected results reported for hexachlorocyclopentadiene in the affected samples were qualified as estimated, "UJ".

The continuing calibration on January 24, 2000 contained a %D for hexachlorocyclopentadiene that was >25% quality control limit affecting the samples analyzed on instrument GCMSR on 1-24-00. The nondetected results reported for hexachlorocyclopentadiene in the affected samples were qualified as estimated, "UJ".

Matrix Spike/Matrix Spike Duplicate Results

The Matrix Spike/Matrix Spike Duplicate percent recoveries (%Rs) for 4,6-dinitro-2-methylphenol and 3-nitroaniline were less than the lower quality control limits affecting sample GWFD-011900. The relative percent differences (%RPDs) for 2,4-dinitrophenol, 4,6-dinitro-2-methylphenol, 4-chloroaniline and 3-nitroaniline were greater than the upper quality control limits affecting sample GWFD-011900. The nondetected results reported for 2,4-dinitrophenol, 4,6-dinitro-2-methylphenol, 4-chloroaniline and 3-nitroaniline in the affected sample were qualified as estimated, "UJ".

The Matrix Spike/Matrix Spike Duplicate percent recoveries (%Rs) for phenol and 3-nitroaniline were less than the lower quality control limits affecting sample DRMO-GMW10D-GW-07. The relative percent differences (%RPDs) for 4-chloroanilne and 3-nitroaniline were greater than the upper quality control limits affecting sample DRMO-GMW10D-GW-07. The nondetected results reported for phenol, 4-chloroanilne and 3-nitroaniline in the affected sample were qualified as estimated, "UJ".

Blank Spike Results

The Blank Spike %Rs for benzoic acid and phenol were less than the lower quality control limits affecting samples DRMO-GMW11D-GW-07, DRMO-GMW11S-GW-07, DRMO-GMW2D-GW-07, DRMO-GMW2S-GW-07, DRMO-GMW9S-GW-07 and GWFD-011900. The nondetected results reported for benzoic acid and phenol in the affected samples were qualified as estimated, "UJ".

The Blank Spike %Rs for benzoic acid, 3-nitroaniline and phenol were less than the lower quality control limits affecting samples DRMO-GMW10D-GW-07, DRMO-GMW10S-GW-07, DRMO-GMW6D-GW-07 and DRMO-GMW6S-GW-07. The nondetected results reported for benzoic acid, 3-nitroaniline and phenol in the affected samples were qualified as estimated, "UJ".

Notes

The PAH compounds are listed on the semivolatile form 1s. However, they were reported using SW 846 method 8310.

Executive Summary

Laboratory Performance: Hexachlorocyclopentadiene was qualified due to calibration noncompliances.

Other Factors Affecting Data Quality: Several Matrix Spike/Matrix Spike Duplicate and Blank Spike noncompliances were noted.

MEMO TO: M. MENGEL - PAGE 3

DATE: **APRIL 6, 2000**

The data for these analyses were reviewed with reference to the "National Functional Guidelines for Organic Review Data Review", February 1994, "EPA Region I Volatile/Semivolatile Data Validation Functional Guidelines", December 1996 and the NFESC document entitled "Navy Installation Restoration Laboratory Quality Assurance Guide." (NFESC 2/96).

The text of this report has been formulated to address only those problem areas affecting data quality.

"I attest that the data referenced herein were validated according to the agreed upon validation criteria as specified in the NFESC Guidelines and the Quality Assurance Project Plan (QAPP)."

Gretchen A. Phipps

Tetra Tech NUS

Joseph A. Samchuck **Quality Control Officer**

Attachments:

- Appendix A Qualified Analytical Data
- Appendix B Results as reported by the Laboratory Appendix C Regional Worksheets
- Appendix D Support Documentation

APPENDIX A
QUALIFIED ANALYTICAL RESULTS

Qualifier Codes:

A = Lab Blank Contamination

B = Field Blank Contamination

C = Calibration (i.e., % RSDs, %Ds, ICVs, CCVs, RPDs, RRFs, etc.) Noncompliance

D = MS/MSD Noncompliance

E = LCS/LCSD Noncompliance

F = Lab Duplicate Imprecision

G = Field Duplicate Imprecision

H = Holding Time Exceedance

I = ICP Serial Dilution Noncompliance

J = GFAA PDS - GFAA MSA's r < 0.995

K = ICP Interference - include ICSAB % R's

L = Instrument Calibration Range Exceedance

M = Sample Preservation

N = Internal Standard Noncompliance

O = Poor Instrument Performance (i.e., base-time drifting)

P = Uncertainty near detection limit (< 2 x IDL for inorganics and <CRQL for organics)

Q = Other problems (can encompass a number of issues)

R = Surrogates Recovery Noncompliance

S = Pesticide/PCB Resolution

T = % Breakdown Noncompliance for DDT and Endrin

U = Pest/PCD% between columns for positive results

V = Non-linear calibrations, tuning r < 0.995 (correlation coefficient)

W = EMPC result

X = Signal to noise response drop

U

U

U

U

U

Page

CTO267 - NSB NEW LONDON **WATER DATA** Accutest, NJ SDG: E62315A

BIS(2-ETHYLHEXYL)PHTHALATE

BUTYLBENZYL PHTHALATE

CARBAZOLE
DI-N ____TE

	SAMPLE NUMBER: SAMPLE DATE: LABORATORY ID: QC_TYPE: % SOLIDS: UNITS: FIELD DUPLICATE OF:	DRMO- 01/18/0 E62315 NORM/ 0.0 % UG/L	DRMO-(01/18/00 E62315 NORM/ 0.0 % UG/L	-5A	N-07	DRMO-6 01/19/00 E62315- NORMA 0.0 % UG/L	10A	J-07	DRMO-6 01/19/00 E62315- NORMA 0.0 % UG/L	/-07			
		RESULT	QUAL	CODE	RESULT	QUAL	CODE	RESULT	QUAL	CODE	RESULT	QUAL	CODE
	SEMIVOLATILES										1_		1
	1,2,4-TRICHLOROBENZENE	2.1	U		2	U		2	U		2	U	
	1,2-DICHLOROBENZENE	2.1	U		2	U		2	U		2	U	ļ
	1,3-DICHLOROBENZENE	2.1	U		2	U		2	<u> </u>		2	U	
-	1,4-DICHLOROBENZENE	2.1	U		2	U		2	U .	ļ	2	U	ļ
	2,4,5-TRICHLOROPHENOL	5.2	U		5	U		5	U		5	U	
	2,4,6-TRICHLOROPHENOL	5.2	U		5	U	ļ	5	U		5	U	ļ
	2,4-DICHLOROPHENOL	5.2	U		5	U		5	· U	<u> </u>	5	U	ļ
	2,4-DIMETHYLPHENOL	5.2	U		5	U		5	U	ļ	5	U	
	2.4-DINITROPHENOL	21	U		20	U		20	U		20	U	
	2,4-DINITROTOLUENE	2.1	U		2	U		2	U	<u> </u>	2	U	
	2,6-DINITROTOLUENE	2.1	U		2	U	<u> </u>	2	U	ļ	2	<u>U</u>	<u> </u>
-	2-CHLORONAPHTHALENE	5.2	U		5	U		5	U ·	ļ	5	U	
	2-CHLOROPHENOL	5.2	U		5	U		5	U		5	<u> </u>	
	2-METHYLPHENOL	5.2	U		5	U		5	U		5	U	<u> </u>
	2-NITROANILINE	5.2	U		5	U		5	U	<u> </u>	5	U	↓
	2-NITROPHENOL	5.2	U		5	U		5	U	<u> </u>	5	U	
	3&4-METHYLPHENOL	5.2	U		5	U		5	U	<u> </u>	5	U.	
	3.3'-DICHLOROBENZIDINE	5.2	Ų		5	U		5	U		5	U	
	3-NITROANILINE	5.2	UJ	DE	5 .	UJ	E	5	U	<u> </u>	5	U	
	4.6-DINITRO-2-METHYLPHENOL	21	U		20	U		20	U	<u> </u>	20	U	
	4-BROMOPHENYL PHENYL ETHER	2.1	U		2	U		2	U		2	U	
	4-CHLORO-3-METHYLPHENOL	5.2	U		5	U		5	U		5	U	
	4-CHLOROANILINE	5.2	UJ	D	5	Ü		5	U		5	U	
	4-CHLOROPHENYL PHENYL ETHER	2.1	U		2	U		2	Ü		2	U	
	4-NITROANILINE	5.2	U		5	Ų		5	U		5	U	
	4-NITROPHENOL	21	U		20	U		20	U		20	U	
	BENZOIC ACID	21.	UJ	E	20	UJ	E	20	UJ	E	20	UJ	E
	BIS(2-CHLOROETHOXY)METHANE	2.1	U		2	U		2	U		2	U	
·	BIS(2-CHLOROETHYL)ETHER	2.1	U		2	U		2	U		2	U	
	BIS(2-CHLOROISOPROPYL) ETHER	2.1	U		2	U		2	U		2	U	
	DIO(2-OTILOTOIO TOTAL)	2.1	11		4 1			2	U		2	U	

U

U

2.1

2.1

2.1

U

U

U

Page

2

CTO267 - NSB NEW LONDON WATER DATA Accutest, NJ SDG: E62315A

SAMPLE NUMBER: SAMPLE DATE: LABORATORY ID: QC_TYPE: % SOLIDS:

UNITS: FIELD DUPLICATE OF:

DRMO-6MW10D-GW-07 01/18/00 E62315-4A NORMAL 0.0 % UG/L DRMO-6MW10S-GW-07 01/18/00 E62315-5A NORMAL 0.0 % UG/L DRMO-6MW11D-GW-07 01/19/00 E62315-10A NORMAL 0.0 % UG/L DRMO-6MW11S-GW-07 01/19/00 E62315-9A NORMAL 0.0 % UG/L

				l						•		
· ·	RESULT	QUAL	CODE									
SEMIVOLATILES												
DI-N-OCTYL PHTHALATE	2.1	U		2	U		2	U		2	U	1
DIBENZOFURAN	5.2	U		5	U		5	U		5	U	
DIETHYL PHTHALATE	2.1	U		2	U		2	U		2	U	1
DIMETHYL PHTHALATE	2.1	U		2	U		2	U		2	Ū	* -
HEXACHLOROBENZENE	2.1	U		2	U		2	U		2	U	
HEXACHLOROBUTADIENE	5.2	U		5	U		5	U		5	U	1.3
HEXACHLOROCYCLOPENTADIENE	21	UJ	С	20	UJ	С	20	U		20	U	
HEXACHLOROETHANE	5.2	U		5	U		5	U		5	U	
ISOPHORONE	2.1	U		2	U		2	U		2	U	
N-NITROSO-DI-N-PROPYLAMINE	5.2	U		5	U		5	U		5	U	
N-NITROSODIPHENYLAMINE	5.2	U		5	U		5	U		5	U	
NITROBENZENE	2.1	U		2	U		2	Ū		2	U	
PENTACHLOROPHENOL	21	Ū		20	U		20	U		20	U	
PHENOL	5.2	UJ	DE	5	ÚJ	E	5	UJ	E	5	UJ	E
									I			

Page

CTO267 - NSB NEW LONDON

WATER DATA Accutest, NJ

SDG: E62315A

SAMPLE NUMBER:
SAMPLE DATE:
LABORATORY ID:
QC_TYPE:
% SOLIDS:
UNITS:
FIELD DUPLICATE OF:

DRMO-6MW2D-GW-07 01/20/00 E62315-12A NORMAL 0.0 % UG/L DRMO-6MW2S-GW-07 01/20/00 E62315-11A NORMAL 0.0 % UG/L DRMO-6MW6D-GW-07 01/18/00 E62315-3A NORMAL 0.0 % UG/L DRMO-6MW6S-GW-07 01/18/00 E62315-2A NORMAL 0.0 % UG/L

UNITS: FIELD DUPLICATE OF:		UG/L			UG/L			UG/L			UG/L		
 TILLD DOT LIOTTLE OF .		RESULT	QUAL	CODE	RESULT	QUAL	CODE	RESULT	QUAL	CODE	RESULT	QUAL	CODE
 SEMIVOLATILES													
1,2,4-TRICHLOROBENZENE		2	U		2	U		2.1	U		2	U	
 1.2-DICHLOROBENZENE		2	U		2	U		2.1	U		2	U	
 1,3-DICHLOROBENZENE		2	U		2	U		2.1	U		2	U	
1,4-DICHLOROBENZENE		2	U		2	U		2.1	U		2	U	
 2.4.5-TRICHLOROPHENOL		5	U		5	U		5:3	U		5.1	U	
 2.4,6-TRICHLOROPHENOL		5	U		5	U		5.3	U		5.1	U	
2,4-DICHLOROPHENOL		5	U		5	U		5.3	U		5.1	U	
 2.4-DIMETHYLPHENOL		5	U		5	U		5.3	U	<u> </u>	5.1	U	
 2.4-DINITROPHENOL		20	U		20	U		21	U		20	U	
 2.4-DINITROTOLUENE		2	υ		2	U		2.1	U	<u> </u>	2	U	
 2.6-DINITROTOLUENE		2	U		2	U		2.1	U	1	2	U	
 2-CHLORONAPHTHALENE		5	U		5	U		5.3	U		5.1	U	
 2-CHLOROPHENOL		5	U		5	U		5.3	U		5.1	U	
 2-METHYLPHENOL		5	U		5	U		5.3	U		5.1	U	
 2-NITROANILINE		5	U		5	U		5.3	U		5.1	U	
 2-NITROPHENOL		5	U		5	U		5.3	U		5.1	U	
 3&4-METHYLPHENOL		5	U		5	U	·	5.3	U		5.1	U	
 3,3'-DICHLOROBENZIDINE		5	U		5	U		5.3	U		5.1	U	
 3-NITROANILINE		5	U		5	U	T	5.3	UJ	E	5.1	UJ	
 4,6-DINITRO-2-METHYLPHENOL		20	U		20	U		21	U		20	U	
 4-BROMOPHENYL PHENYL ETHER		2	U		2	U.		2.1	IJ		2	U	
 4-CHLORO-3-METHYLPHENOL		5	U		5	U		5.3	U		5.1	U	
 4-CHLOROANILINE		5	U		5	U		5.3	U		5.1	U	
 4-CHLOROPHENYL PHENYL ETHER		2	U		2	U		2.1	U		2	U	
	<u></u>	5	U	1	5	U		5.3	U		5.1	U	
 4-NITROANILINE		20	Ū		20	U		21	U		20	U	
 4-NITROPHENOL		20	UJ	E	20	UJ	E	21	UJ	E	20	UJ	
 BENZOIC ACID			U	 	2	U		2.1	U		2	U	1
 BIS(2-CHLOROETHOXY)METHANE	····	2	u	 	2	U	1	2.1	U		2	U	
 BIS(2-CHLOROETHYL)ETHER		2	U		2	U	1	2.1	U		2	U	
 BIS(2-CHLOROISOPROPYL) ETHER		2	U	- 	2	U	 	2.1	U		2	U	
 BIS(2-ETHYLHEXYL)PHTHALATE		2	- U	 	2	U	1	2.1	· U		2	U	
 BUTYLBENZYL PHTHALATE		- <u>2</u> - 2	- U	-	2	- Ŭ	+	2.1	U		2	U	7
CARRAZOLE	\ 		<u> </u>		ļ		 	2.1	, <u>'</u>	1	1-	٠Ū	

CTO267 - NSB NEW LONDON WATER DATA Accutest, NJ

SDG: E62315A

SAMPLE NUMBER: SAMPLE DATE: LABORATORY ID: QC_TYPE: % SOLIDS: UNITS:

FIELD DUPLICATE OF:

DRMO-6MW2D-GW-07 01/20/00 E62315-12A NORMAL 0.0 % UG/L DRMO-6MW2S-GW-07 01/20/00 E62315-11A NORMAL 0.0 % UG/L DRMO-6MW6D-GW-07 01/18/00 E62315-3A NORMAL 0.0 % UG/L DRMO-6MW6S-GW-07 01/18/00 E62315-2A NORMAL 0.0 % UG/L

				1									
	RESULT	QUAL	CODE	RESULT	QUAL	CODE	RESULT	QUAL	CODE	RESULT	QUAL	CODE	
SEMIVOLATILES													
DI-N-OCTYL PHTHALATE	2	U		2	U	<u> </u>	2.1	U		2	U		
DIBENZOFURAN	5	U		5	U		5.3	U		5.1	U		
DIETHYL PHTHALATE	2	U		2	U		2.1 .	U		2	U	. :	
DIMETHYL PHTHALATE	2	U		2	U		2.1	U		2	U	13.	
HEXACHLOROBENZENE	2	U		2	U		2.1	U		2	U		Š.
HEXACHLOROBUTADIENE	5	U		5	U		5.3	· U		5.1	U	12.5	
HEXACHLOROCYCLOPENTADIENE	20	U		20	U		21	ΟJ	С	20	· UJ	С	
HEXACHLOROETHANE	5	U		5	U		5.3	U		5.1	U	7.	ger n
ISOPHORONE	2	U		2	U		2.1	U		2	U	48.4%	2
N-NITROSO-DI-N-PROPYLAMINE	5	U		5	U		5.3	U		5.1	U		
N-NITROSODIPHENYLAMINE	5	U		5	U		5.3	U		5.1	U	1.5	
NITROBENZENE .	2	U		2	U		2.1	Ü		2	U		re Co
PENTACHLOROPHENOL	20	U		20	U		21	U		20	U		
PHENOL	5	UJ	E	5	UJ	E	5.3	UJ	E	5.1	UJ	E	

Page

WATER DATA Accutest, NJ

SDG: E62315A

SAMPLE NUMBER:
SAMPLE DATE:
LABORATORY ID:
QC_TYPE:
% SOLIDS:
UNITS:
FIELD DUPLICATE OF:

DRMO-6MW9S-GW-07 01/19/00 E62315-8A NORMAL 0.0 % UG/L GWFD-011900 01/19/00 E62315-7A NORMAL 0.0 % UG/L -DRMO-GMW9S-GW-07

100.0 %

100.0 %

11

QUAL CODE RESULT QUAL. CODE RESULT QUAL CODE RESULT QUAL CODE RESULT **SEMIVOLATILES** U U 2.1 1,2,4-TRICHLOROBENZENE 2.1 Ū U 1,2-DICHLOROBENZENE 2.1 U 2.1 U 1,3-DICHLOROBENZENE 2.1 U 2.1 U 1,4-DICHLOROBENZENE Ū 5.2 U 2.4,5-TRICHLOROPHENOL 5.2 5.2 U U 2,4,6-TRICHLOROPHENOL 5.2 U 5.2 U 2,4-DICHLOROPHENOL υ 5.2 U 5.2 2,4-DIMETHYLPHENOL Ū D 21 21 UJ 2,4-DINITROPHENOL 2.1 U 2.1 U 2,4-DINITROTOLUENE U 2.1 U 2,6-DINITROTOLUENE U 5.2 U 5.2 2-CHLORONAPHTHALENE 5.2 U 5.2 U 2-CHLOROPHENOL 5.2 U 5.2 U 2-METHYLPHENOL 5.2 U 5.2 U 2-NITROANILINE 5.2 Ü 5.2 U 2-NITROPHENOL 5.2 U 5.2 Ü 3&4-METHYLPHENOL 5.2 Ų 5.2 U 3,3'-DICHLOROBENZIDINE 5.2 UJ U D 5.2 3-NITROANILINE UJ D U 4,6-DINITRO-2-METHYLPHENOL 21 U 2.1 U 2.1 4-BROMOPHENYL PHENYL ETHER 5.2 U U 5.2 4-CHLORO-3-METHYLPHENOL 5.2 UJ D 5.2 U **4-CHLOROANILINE** U 2.1 U 2.1 4-CHLOROPHENYL PHENYL ETHER 5.2 U U 5.2 4-NITROANILINE U 21 U 21 4-NITROPHENOL 21 UJ E 21 UJ Е BENZOIC ACID 2.1 U 2.1 U BIS(2-CHLOROETHOXY)METHANE 2.1 U U BIS(2-CHLOROETHYL)ETHER 2.1 2.1 U U BIS(2-CHLOROISOPROPYL) ETHER 2.1 U 2.1 U BIS(2-ETHYLHEXYL)PHTHALATE Ū 2.1 U 2.1 **BUTYLBENZYL PHTHALATE** 2.1 Ū 2.1 CARBAZOLE DI-N __ . L PH1. _ .TE

Page

5

CTO267 - NSB NEW LONDON WATER DATA

Accutest, NJ

SDG: E62315A

SAMPLE NUMBER:
SAMPLE DATE:
LABORATORY ID:
QC_TYPE:
% SOLIDS:
UNITS:
FIELD DUPLICATE OF:

DRMO-6MW9S-GW-07 01/19/00 E62315-8A NORMAL 0.0 %

UG/L

GWFD-011900 01/19/00 E62315-7A NORMAL 0.0 % UG/L DRMO-GMW9S-GW-07

100.0 %

11

14

100.0 %

RESULT QUAL CODE RESULT QUAL CODE RESULT QUAL CODE RESULT QUAL CODE **SEMIVOLATILES** U U 2.1 **DI-N-OCTYL PHTHALATE** U 5.2 U 5.2 DIBENZOFURAN 2.1 Ū Ū DIETHYL PHTHALATE 2.1 U U DIMETHYL PHTHALATE 2.1 U U **HEXACHLOROBENZENE** 5.2 U 5.2 U **HEXACHLOROBUTADIENE** U 21 U 21 **HEXACHLOROCYCLOPENTADIENE** U 5.2 Ü 5.2 **HEXACHLOROETHANE** υ Ū 2.1 ISOPHORONE U U 5.2 5.2 N-NITROSO-DI-N-PROPYLAMINE U 5.2 Ū 5.2 N-NITROSODIPHENYLAMINE 2.1 Ū U NITROBENZENE 21 U 21 U **PENTACHLOROPHENOL** UJ E 5.2 UJ E 5.2 **PHENOL**

Page

WATER DATA Accutest, NJ

SDG: E62315A

SAMPLE NUMBER:
SAMPLE DATE:
LABORATORY ID:
QC_TYPE:
% SOLIDS:
UNITS:
FIELD DUPLICATE OF:

DRMO-6MW10D-GW-07 01/18/00 E62315-4A NORMAL 0.0 % UG/L DRMO-6MW10S-GW-07 01/18/00 E62315-5A NORMAL 0.0 % UG/L DRMO-6MW11D-GW-07 01/19/00 E62315-10A NORMAL 0.0 % UG/L DRMO-6MW11S-GW-07 01/19/00 E62315-9A NORMAL 0.0 % UG/L

Page

FIELD DOFLIONIC OI .				l								
	RESULT	QUAL	CODE	RESULT	QUAL	CODE	RESULT	QUAL	CODE	RESULT	QUAL	CODE
POLYNUCLEAR AROMATIC HYDROCARBONS						,				1.1	U	1
1-METHYLNAPHTHALENE	1.1	U		1	U	ļ	<u> </u>	<u> </u>			Ü	+
2-METHYLNAPHTHALENE	1.1	U		1	U		1	<u> </u>		1.1	U	+
ACENAPHTHENE	1.1	U		1	<u> </u>	J	1	U		1.1		-
ACENAPHTHYLENE	1.1	U		1	<u>U</u>		1	<u>U</u>	-	1.1	<u>U</u>	
ANTHRACENE	1.1	U		1	U	<u> </u>	1	<u> </u>		1.1	U	+
BENZO(A)ANTHRACENE	0.16	U		0.15	U		0.15	U	 	0.16	<u> </u>	
BENZO(A)PYRENE	0.16	U		0.15	U		0.15	U		0.16	U	
BENZO(B)FLUORANTHENE	0.16	U		0.15	U		0.15	U		0.16	U	
BENZO(G,H,I)PERYLENE	0.16	U		0.15	U		0.15	U		0.16	<u> </u>	
BENZO(K)FLUORANTHENE	0.16	Ü .		0.15	U		0.15	U		0.16	U	
CHRYSENE	0.16	U		0.15	U		0.15	U		0.16	<u> </u>	
DIBENZO(A,H)ANTHRACENE	0.16	U		0.15	U		0.15	U ·		0.16	U	
	1.1	Ū		1	U		1	U		1.1	U	
FLUORANTHENE	1.1	Ū		1	U		1	U		1.1	U	
FLUORENE	0.16	U		0.15	U	1	0.15	U		0.16	U	
INDENO(1,2,3-CD)PYRENE	1.1		 	1	U		1	U		1.1	U	
NAPHTHALENE	1.1	 u		1	U	+	1	U		1.1	U	
PHENANTHRENE		U	+	1	- Ū	+	17	U	1	1.1	υ	
PYRENE	1.1			 '			+			1		

1

WATER DATA Accutest, NJ SDG: E62315A

SAMPLE NUMBER: SAMPLE DATE: LABORATORY ID: QC_TYPE: % SOLIDS: UNITS:

FIELD DUPLICATE OF:

DRMO-6MW2D-GW-07 01/20/00 E62315-12A NORMAL 0.0 % UG/L DRMO-6MW2S-GW-07 01/20/00 E62315-11A NORMAL 0.0 % UG/L DRMO-6MW6D-GW-07 01/18/00 E62315-3A NORMAL 0.0 % UG/L DRMO-6MW6S-GW-07 01/18/00 E62315-2A NORMAL 0.0 % UG/L

Page

	RESULT	QUAL	CODE	RESULT	QUAL	CODE	RESULT	QUAL	CODE	RESULT	QUAL	CODE
POLYNUCLEAR AROMATIC HYDROCARBONS												
1-METHYLNAPHTHALENE	1	U		1	U		1	U		1	U	
2-METHYLNAPHTHALENE	1	U		1	U		1	U		1	U	
ACENAPHTHENE	1	U		1	U		1	U		1	U	1
ACENAPHTHYLENE	1	U		1	U		1	U		1	U	
ANTHRACENE	1	U		1	U		1	U		1	U	
BENZO(A)ANTHRACENE	0.15	U		0.15	U		0.16	<u>U·</u>	<u> </u>	0.15	Ú	
BENZO(A)PYRENE	0.15	U	<u> </u>	0.15	U		0.16	U		0.15	U	
BENZO(B)FLUORANTHENE	0.15	U		0.15	U		0.16	U		0.15	U	
BENZO(G,H,I)PERYLENE	0.15	U		0.15	U		0.16	U		0.15	U	
BENZO(K)FLUORANTHENE	0.15	U		0.15	U		0.16	U		0.15	U	<u> </u>
CHRYSENE	0.15	U		0.15	U		0.16	U		0.15	U	<u> </u>
DIBENZO(A,H)ANTHRACENE	0.15	U		0.15	U		0.16	U		0.15	U	<u> </u>
FLUORANTHENE	1	U		1	U		1	U		1	U	<u> </u>
FLUORENE	1	U		1	U	<u> </u>	1	U		1	U	
INDENO(1,2,3-CD)PYRENE	0.15	U		0.15	U		0.16	U		0.15	U	
NAPHTHALENE	1	U		1	U		1	U		1	U	
PHENANTHRENE	1	U		1	U	<u> </u>	1	U	<u> </u>	1	<u> </u>	
PYRENE	1	U .		1	U		1	U		1	U	

2

WATER DATA Accutest, NJ SDG: E62315A

SAMPLE NUMBER: SAMPLE DATE: LABORATORY ID: QC_TYPE: % SOLIDS: UNITS: FIELD DUPLICATE OF: DRMO-6MW9S-GW-07 01/19/00 E62315-8A NORMAL 0.0 % UG/L

GWFD-011900 01/19/00 E62315-7A NORMAL 0.0 % UG/L DRMO-GMW9S-GW-07

11

11

100.0 %

100.0 %

Page

	RESULT	QUAL	CODE	RESULT	QUAL	CODE	RESULT	QUAL	CODE	RESULT	QUAL	CODE
POLYNUCLEAR AROMATIC HYDROCARBONS					•							4
1-METHYLNAPHTHALENE	- 1.1	U		1.1	U	<u> </u>					<u>-</u>	
2-METHYLNAPHTHALENE	1.1	U		1.1	U							
ACENAPHTHENE	1.1	U		1.1	U	ļ			ļ			
ACENAPHTHYLENE	1.1	U		1.1	U				ļ	<u> </u>		ļ
ANTHRACENE	1.1	U		1.1	U							
BENZO(A)ANTHRACENE	0.16	U		0.16	U	ļ <u>.</u>	<u> </u>					
BENZO(A)PYRENE	0.16	U .		0.16	U	ļ						
BENZO(B)FLUORANTHENE	0.16	U		0.16	: U				<u> </u>	 		
BENZO(G,H,I)PERYLENE	0.16	U		0.16	U	ļ	<u></u>		-			
BENZO(K)FLUORANTHENE	0.16	U		0.16	U							
CHRYSENE	0.16	U		0.16	U					ļ		
DIBENZO(A,H)ANTHRACENE	0.16	U		0.16	U				<u> </u>	 		
FLUORANTHENE	1.1	U		1.1	U				<u> </u>	ļ		-
FLUORENE	1.1	U		1.1	U	J			1	ļ		ļ
INDENO(1,2,3-CD)PYRENE	0.16	U		0.16	U					ļ		
NAPHTHALENE	1.1	U		1.1	U		<u> </u>			 		
PHENANTHRENE	1.1	U		1.1	U							
PYRENE	1.1	U		1.1	U		<u> </u>					

Tetra Tech NUS

INTERNAL CORRESPONDENCE

TO:

MARK MENGEL

-

DATE: APRIL 7, 2000

FROM:

LINDA KARSONOVICH

COPIES: DV FILE

SUBJECT:

ORGANIC DATA VALIDATION: SVOA/PAH

CTO 267, NEW LONDON

SDG E62512A

SAMPLES:

1/Aqueous/

DRMO-6MW1S-GW-07

Overview

The sample set for the CTO 267, New London, SDG E62512A consists of one (1) aqueous environmental sample. The sample was analyzed for selected semivolatile organic compounds and polynuclear aromatic hydrocarbons (PAH). No field duplicate pairs were included in the SDG.

The sample was collected by TetraTech NUS on January 21, 2000 and were analyzed by Accutest. Analyses were conducted using SW-846 Methods 8270C and 8310 analytical and reporting protocols.

The data were evaluated based on the following parameters:

- Data Completeness
- Holding Times
- GC/MS Tuning
 - Calibration
- Blanks
- Surrogate Spike Recoveries
 - Matrix Spike/Matrix Spike Duplicate Results
 - Blank Spike Results
- Field Duplicate Precision
- Internal Standards Performance
- Instrument Performance
 - Compound Identification
- Compound Quantitation
- Detection Limits

The asterisk (*) indicates that all quality control criteria were met for this parameter. Qualified (if applicable) analytical results are summarized in Appendix A. Results as reported by the laboratory are presented in Appendix B. Appendix C contains Region I worksheets, and Appendix D contains the documentation to support the findings as discussed in this data validation report. The attached Table I summarizes the validation qualifications which were based on the following information:

MATRIX SPIKE/MATRIX SPIKE DUPLICATE

Several compounds fell below the lower quality control limits in the semivolatile MS/MSD. The compounds were not detected in the unspiked sample. The unspiked sample was not included in this SDG. No qualifiers were assigned on this basis.

BLANK SPIKE RESULTS

Several compounds fell below the lower quality control limits in the semivolatile blank spikes. The compounds were not detected in the unspiked samples. Nondetected results for 4,6-dinitro-2-methylphenol, pentachlorophenol, 3,3'-dichlorobenzidine, and 3-nitroaniline were qualified as estimated, UJ.

ADDITIONAL COMMENTS

Positive results reported at concentrations below the CRQL were qualified as estimated, (J).

The quantitation report for the semivolatile fraction of the sample was not in the SDG. The laboratory was contacted and was able to supply the missing information.

The text of this report has been formulated to address only those problem areas affecting data quality.

OVERALL ASSESSMENT

Laboratory Performance: All data quality parameters were met for this fraction. No qualifiers were assigned.

Other Factors Affecting Data Quality: None.

The data for these analyses were reviewed with reference to the Region I EPA "Volatile and Semivolatile Data Validation Functional Guidelines - Part II" (12/96).

"I attest that the data referenced herein were validated according to the agreed upon validation criteria as specified in the NFESC Guidelines and the Quality Assurance Project Plan (QAPP)."

Tetra Teck MUS

Linda Karsonovich Chemist/Data Validator

TetraTech NUS

Joseph A. Samchuck Data Validation Quality Assurance Officer

Attachments:

- 1. Appendix A Qualified Analytical Results
- 2. Appendix B Results as Reported by the Laboratory
- 3. Appendix C Regional Worksheets
- 4. Appendix D Support Documentation

Qualifier Codes:

A = Lab Blank Contamination

B = Field Blank Contamination

C = Calibration (i.e., % RSDs, %Ds, ICVs, CCVs, RPDs, RRFs, etc.) Noncompliance

D = MS/MSD Noncompliance

E = LCS/LCSD Noncompliance

F = Lab Duplicate Imprecision

G = Field Duplicate Imprecision

H = Holding Time Exceedance

| = ICP Serial Dilution Noncompliance

J = GFAA PDS - GFAA MSA's r < 0.995

K = ICP Interference - include ICSAB % R's

L = Instrument Calibration Range Exceedance

M = Sample Preservation

N = Internal Standard Noncompliance

O = Poor Instrument Performance (i.e., base-time drifting)

P = Uncertainty near detection limit (< 2 x IDL for inorganics and <CRQL for organics)

Q = Other problems (can encompass a number of issues)

R = Surrogates Recovery Noncompliance

S = Pesticide/PCB Resolution

T = % Breakdown Noncompliance for DDT and Endrin

U = Pest/PCB D% between columns for positive results

V = Non-linear calibrations, tuning r < 0.995 (correlation coefficient)

W = EMPC result

X = Signal to noise response drop

Y = % Solid content is less than 30%

and and the control of the control o a de la Proposition de la voltage de la Paris de la Carte de l En la Eguada de la Carte d APPENDIX A QUALIFIED LABORATORY RESULTS

WATER DATA Accutest, NJ

SDG: E62512A

TE المناسبة DI-N-مناتثاً L PH

SAMPLE NUMBER: DRMO-6MW1S-GW-07 SAMPLE DATE: 01/21/00 IILABORATORY ID: E62512-2A QC TYPE: NORMAL % SOLIDS: 0.0 % 100.0 % 100.0 % 100.0 % UNITS: UG/L FIELD DUPLICATE OF: RESULT QUAL CODE RESULT QUAL CODE RESULT QUAL CODE RESULT QUAL CODE **SEMIVOLATILES** 1,2,4-TRICHLOROBENZENE U 1,2-DICHLOROBENZENE 2 U 1,3-DICHLOROBENZENE U 1,4-DICHLOROBENZENE 5 U 2,4,5-TRICHLOROPHENOL U 2,4,6-TRICHLOROPHENOL U 2,4-DICHLOROPHENOL υ 2,4-DIMETHYLPHENOL 5 20 U 2,4-DINITROPHENOL 2 υ 2,4-DINITROTOLUENE 2 U 2,6-DINITROTOLUENE Ū 2-CHLORONAPHTHALENE Ū 5 2-CHLOROPHENOL U 5 2-METHYLPHENOL Ü 2-NITROANILINE U 2-NITROPHENOL U 3&4-METHYLPHENOL Ε 5 UJ 3,3'-DICHLOROBENZIDINE UJ Е 3-NITROANILINE 20 IJ E 4,6-DINITRO-2-METHYLPHENOL U 2 4-BROMOPHENYL PHENYL ETHER U 4-CHLORO-3-METHYLPHENOL 5 U 4-CHLOROANILINE U 2 4-CHLOROPHENYL PHENYL ETHER Ū 4-NITROANILINE U 20 4-NITROPHENOL 20 U BENZOIC ACID U **BIS(2-CHLOROETHOXY)METHANE** U 2 BIS(2-CHLOROETHYL)ETHER 2 U BIS(2-CHLOROISOPROPYL) ETHER BIS(2-ETHYLHEXYL)PHTHALATE 2 U **BUTYLBENZYL PHTHALATE** CARRAZOLE

WATER DATA Accutest, NJ SDG: E62512A

SAMPLE NUMBER: SAMPLE DATE: LABORATORY ID: QC_TYPE: % SOLIDS: UNITS: FIELD DUPLICATE OF: DRMO-6MW1S-GW-07 01/21/00 E62512-2A NORMAL 0.0 % UG/L

11 100.0 %

100.0 %

Page

	RESULT	QUAL	CODE	RESULT	QUAL	CODE	RESULT	QUAL	CODE	RESULT	QUAL	CODE
SEMIVOLATILES												
DI-N-OCTYL PHTHALATE	2	U				1						
DIBENZOFURAN	5	U										
DIETHYL PHTHALATE	2	U										
DIMETHYL PHTHALATE	2	U										*
HEXACHLOROBENZENE	2	U						•		٠		- 10 May 17 - 17 - 1
HEXACHLOROBUTADIENE	5	U										486
HEXACHLOROCYCLOPENTADIENE	20	U							1			
HEXACHLOROETHANE	5	U										Albert By
ISOPHORONE	2	U										1/2 St
N-NITROSO-DI-N-PROPYLAMINE	5	U										myt in
N-NITROSODIPHENYLAMINE	5	Ü										- A
NITROBENZENE	2.	U				<u> </u>						·A
PENTACHLOROPHENOL	20	กา	E					·				
PHENOL	5	U		<u> </u>		<u> </u>			<u> </u>			

11

100.0 %

WATER DATA Accutest, NJ

SDG: E62512A

SAMPLE NUMBER: SAMPLE DATE: LABORATORY ID: QC_TYPE: % SOLIDS: UNITS:

FIELD DUPLICATE OF:

DRMO-6MW1S-GW-07 01/21/00 E62512-2A NORMAL 0.0 %

UG/L

11 11

100.0 % 100.0 %

11

										<u> </u>		
	RESULT	QUAL	CODE	RESULT	QUAL.	CODE	RESULT	QUAL	CODE	RESULT	QUAL	CODE
POLYNUCLEAR AROMATIC HYDROCARBONS		<u>-</u>									-	
1-METHYLNAPHTHALENE	1.1	U		<u> </u>		l]		1
2-METHYLNAPHTHALENE	1.1	υ										
ACENAPHTHENE	1.1	U										
ACENAPHTHYLENE	1,1	U										1
ANTHRACENE	1.1	U										
BENZO(A)ANTHRACENE	0.17	U										
BENZO(A)PYRENE	0.17	U										1
BENZO(B)FLUORANTHENE	0.17	U										
BENZO(G,H,I)PERYLENE	0.17	U										
BENZO(K)FLUORANTHENE	0.17	U										
CHRYSENE	0.17	U										
DIBENZO(A,H)ANTHRACENE	0.17	U										
FLUORANTHENE	1.1	U										
FLUORÈNE	1.1	U										
INDENO(1,2,3-CD)PYRENE	0.17	U									····	
NAPHTHALENE	1.1	U										1
PHENANTHRENE	1.1	Ü										1
PYRENE	1.1	U									· · · · · · · · · · · · · · · · · · ·	

100.0 %

Tetra Tech NUS

INTERNAL CORRESPONDENCE

TO:

M. MENGEL

DATE:

The transfer that the transfer the tell state and

aditik era ki edua bila bila di makifadi. Na kisa piki mana di kababin kepali mangapin mana bila

MARCH 28, 2000

FROM:

TERRI L. SOLOMON

COPIES:

DV FILE

SUBJECT:

INORGANIC DATA VALIDATION - METALS CTO 267 - NSB NEW LONDON, CONNECTICUT

SDG - E62315

SAMPLES:

10/Aqueous/

DRMO-6MW10D-GW-07 DRMO-6MW11S-GW-07 DRMO-6MW10S-GW-07 DRMO-6MW2D-GW-07 DRMO-6MW11D-GW-07 DRMO-6MW2S-GW-07

DRMO-6MW6D-GW-07

DRMO-6MW6S-GW-07

DRMO-6MW9S-GW-07

GWFD-011900

Overview

The sample set for CTO 267, NSB New London, SDG E62315, consists of ten (10) aqueous environmental samples. One (1) field duplicate pair (DRMO-6MW9S-GW-07 / GWFD-011900) was included within this SDG.

All samples were analyzed for Analyte List (TAL) metals. The samples were collected by Tetra Tech NUS on January 18, 19 and 20, 2000 and analyzed by Accutest laboratories under Naval Facilities Engineering Service Center (NFESC) Quality Assurance/Quality Control (QA/QC) criteria. The TAL metals analyses were conducted using "USEPA Contract Laboratory Program Statement of Work for Inorganics Analysis", document ILM04.0. All analyses, with the exception of mercury, were conducted using Inductively Coupled Plasma (ICP) methodologies. Mercury analyses were conducted using Cold Vapor Atomic Absorption (CVAA). These data were evaluated based on the following parameters:

- * Data Completeness
- Holding Times
 - Calibration Verifications
 - Laboratory Blank Analyses
 - Interference Check Sample Analyses
 - Matrix Spike Results
- Laboratory Duplicate Results
- Field Duplicate Results
 - Serial Dilution Analyses
- Detection Limits
- Sample Quantitation
 - * All quality control criteria were met for this parameter.

MEMO TO:

M. MENGEL

DATE:

MARCH 28, 2000 - PAGE 2

Calibration Verifications

The Contract Required Detection Limit (CRDL) Percent Recoveries (%Rs) for arsenic and zinc were > 120% quality control limit. Positive results < 3X CRDL reported for the aforementioned analytes were qualified as estimated, "J".

The CRDL %R for silver was < 80% quality control limit. The nondetected results reported for the aforementioned analyte were qualified as estimated, "UJ".

Laboratory Blank Analyses

The following contaminants were detected in the laboratory method blanks at the following maximum concentrations:

	<u>Maximum</u>	Aqueous Action
<u>Analyte</u>	Concentration	<u>Level</u>
aluminum	95.6 ug/L	478 ug/L
antimony	2.5 ug/L	12.5 ug/L
beryllium	0.8 ug/L	4.0 ug/L
cadmium	1.0 ug/L	5.0 ug/L
calcium	102.4 ug/L	512 ug/L
chromium	4.3 ug/L	21.5 ug/L
cobalt	1.1 ug/L	5.5 ug/L
copper	1.3 ug/L	6.5 ug/L
iron	56.9 ug/L	284.5 ug/L
lead	1.9 ug/L	9.5 ug/L
magnesium	75.8 ug/L	379 ug/L
manganese	1.3 ug/L	6.5 ug/L
nickel	3.5 ug/L	17.5 ug/L
selenium	6.2 ug/L	31.0 ug/L
sodium	697.2 ug/L	3486 ug/L
thallium	4.4 ug/L	22.0 ug/L
vanadium	1.8 ug/L	9.0 ug/L

Affects samples: All

An action level of 5X the maximum concentration has been used to evaluate the sample data for blank contamination. Dilution factors and sample aliquots were taken into consideration when evaluating for blank contamination. Positive results less than the action level for aluminum, antimony, beryllium, cadmium, chromium, cobalt, copper, iron, lead, manganese, nickel, sodium, thallium and vanadium have been qualified as nondetected, "U". Action was not taken for the remaining analytes as the results were either greater than the action level or were nondetected results.

Interference Check Sample Analyses

The interfering analyte magnesium was present in sample DRMO-6MW10D-GW-07 at a concentration which was comparable to the level of magnesium in the Interference Check Sample (ICS) solution. Several analytes namely arsenic, cadmium, manganese and potassium were present in the ICS solution at concentrations which exceeded 2X the Instrument Detection Limit (IDL). Interference affects exist for arsenic in the affected sample. The positive result reported for arsenic was qualified as estimated, "J".

The interfering analytes calcium and magnesium were present in sample DRMO-6MW11D-GW-07 at concentrations which were comparable to the levels of calcium and magnesium in the Interference Check Sample (ICS) solution. Several analytes namely arsenic, cadmium, manganese and potassium were present in the ICS solution at concentrations which exceeded 2X the Instrument Detection Limit (IDL). Interference affects exist for arsenic and cadmium in the affected sample. The nondetected results reported for arsenic and cadmium were qualified as estimated, "UJ".

MEMO TO:

M. MENGEL

DATE:

MARCH 28, 2000 - PAGE 3

The interfering analytes calcium and magnesium were present in sample DRMO-6MW2D-GW-07 at concentrations which were comparable to the levels of calcium and magnesium in the Interference Check Sample (ICS) solution. Several analytes namely arsenic, cadmium, manganese and potassium were present in the ICS solution at concentrations which exceeded 2X the Instrument Detection Limit (IDL). Interference affects exist for arsenic in the affected sample. The nondetected result reported for arsenic was qualified as estimated, "UJ".

The interfering analyte magnesium was present in sample DRMO-6MW2S-GW-07 at a concentration which was comparable to the level of magnesium in the Interference Check Sample (ICS) solution. Several analytes namely arsenic, cadmium, manganese and potassium were present in the ICS solution at concentrations which exceeded 2X the Instrument Detection Limit (IDL). Interference affects exist for arsenic and manganese in the affected sample. The positive result reported for manganese and the nondetected result reported for arsenic were qualified as estimated, "J" and "UJ", respectively.

Matrix Spike Results

The matrix spike percent recovery for mercury was < 75% quality control limit. The nondetected results reported for the aforementioned analyte were qualified as estimated, "UJ".

ICP Serial Dilution Results

The ICP serial dilution percent differences for iron, potassium and sodium were > 15% quality control limit. The positive results reported for the aforementioned analytes were qualified as estimated, "J".

Notes

Several CRDL percent recoveries for lead, selenium and thallium were outside the 80-120% quality control limits. However, no validation actions were warranted as all sample results were either nondetects, were > 3X CRDL or were qualified as blank contamination.

Sample results < 2X the Instrument Detection Limit (IDL) for arsenic were qualified as estimated, "J".

Executive Summary

Laboratory Performance: Several CRDL %Rs were outside the 80-120% quality control limits. Several analytes were detected in the laboratory method blanks.

Other Factors Affecting Data Quality: The interfering analytes calcium and/or magnesium were present in several samples. The MS %R for mercury was < 75% quality control limit. The ICP serial dilution percent differences for iron, potassium and sodium were > 15% quality control limit. Sample results < 2X the IDL for arsenic were qualified as estimated.

MEMO TO:

M. MENGEL

DATE:

MARCH 28, 2000 - PAGE 4

The data for these analyses were reviewed with reference to the "National Functional Guidelines for Inorganic Review", February 1994, "EPA Region I Functional Guidelines for Evaluating Inorganic Analyses", February 1989 and the NFESC document entitled "Navy Installation Restoration Laboratory Quality Assurance Guide " (NFESC 2/96).

The text of this report has been formulated to address only those problem areas affecting data quality.

"I attest that the data referenced herein were validated according to the agreed upon validation criteria as specified in the NFESC Guidelines and the Quality Assurance Project Plan (QAPP)."

Zetra Tech NUS Terri L. Solomon

Chemist

Vetra tech NUS Joseph A. Samchuck Quality Assurance Officer

Attachments:

1. Appendix A - Qualified Analytical Results

2. Appendix B - Results as reported by the Laboratory

3. Appendix C - Regional Worksheets

4. Appendix D - Support Documentation

APPENDIX A
Qualified Analytical Results

보일을 맞았다. 그리다 그렇게 하는 아무리를 하는 것이다.

an ille i ji. I dasalih gege

terioria de la composiçõe La composiçõe de la compo

en en en en en en la filiabet de filiún de formende de en en en en en en en entre de filige filiún. En en en e En en en en en en en engleren e beskelen partegalen jarra de groupen filiabet la laborar en engaler en en en e

WATER DATA

Accutest, NJ SDG: E62315

SAMPLE NUMBER: SAMPLE DATE: LABORATORY ID: QC_TYPE: % SOLIDS: UNITS: FIELD DUPLICATE OF: DRMO-6MW10D-GW-07 01/18/00 E62315-4 NORMAL 0.0 % UG/L DRMO-6MW10S-GW-07 01/18/00 E62315-5 NORMAL 0.0 % UG/L DRMO-6MW11D-GW-07 01/19/00 E62315-10 NORMAL 0.0 % UG/L DRMO-6MW11S-GW-07 01/19/00 E62315-9 NORMAL 0.0 % UG/L

TIELD BOT LIGATE OF .	501 E0/172 01 .											
	RESULT	QUAL	CODE	RESULT	QUAL	CODE	RESULT	QUAL	CODE	RESULT	QUAL	CODE
INORGANICS										7		
ALUMINUM	72.5	U		72.5	U		274	U	A	261	U	A
ANTIMONY	2.1	U		4.6	U	Α	4.6	U	Α	2.1	U	1
ARSENIC	4.2	J	CKP	2.6	U		2.6	UJ	К	2.6	Ų	1
BARIUM	44.8			127			280		1	89.4		1
BERYLLIUM	0.20	U		0.20	U		0.20	Ų		0.20	U	
CADMIUM	0.37	U	A	1.2	U	Ā	0.30	UJ	К	0.64	Ų	A
CALCIUM	171000	•		119000			290000		1	99000		
CHROMIUM	1.0	U		1.0	Ü.		1.0	U		1.0	U	
COBALT	3.3	Ü	А	2.4	U	A	1.2	U	Α	1.4	U	A
COPPER	1.3	U		4.9	U	A	1.9	Ū	A.	5.0	U	A
IRON	1510	J .	1	935	J	I	2080	J ·	i	264	U	A
LEAD	1.8	U		1.8	Ŭ		1.8	U		2.7	U	A
MAGNESIUM	384000			247000			769000			237000	***************************************	
MANGANESE	782			474			1010			344		
MERCURY	0.10	UJ	D	0.10	UJ	D	0.10	ÛĴ	D	0.10	UJ	D
NICKÉL	7.9	U	· A	35.1			2.4	U	Α	1.9	U	
POTASSIUM	175000	J	1	111000	J	. 1	331000	J	ı	103000	J	1
SELENIUM	3.4	U		3.4	U		3.4	U		3.4	U	
SILVER	. 1.1	UJ	С	1.1	UJ	С	1.1	UJ	С	1.1	UJ	С
SODIUM	2870000	J	ı	1780000	J	ı	5630000	J	1	1770000	J	
THALLIUM	4.1	U		4.1	U		4.1	U		4.1	U	
VANADIUM	0.70	U		311			1.5	U	Α	20.6		
ZINC	77.6			91.5			8.7	J		77.4		

Page

2

CTO267 - NSB NEW LONDON WATER DATA Accutest, NJ SDG: E62315

SAMPLE NUMBER:
SAMPLE DATE:
LABORATORY ID:
QC_TYPE:
% SOLIDS:
UNITS:
FIELD DUPLICATE OF:

DRMO-6MW2D-GW-07 01/20/00 E62315-12 NORMAL 0.0 % UG/L DRMO-6MW2S-GW-07 01/20/00 E62315-11 NORMAL 0.0 % UG/L DRMO-6MW6D-GW-07 01/18/00 E62315-3 NORMAL 0.0 % UG/L DRMO-6MW6S-GW-07 01/18/00 E62315-2 NORMAL 0.0 % UG/L

												
	RESULT	QUAL	CODE	RESULT	QUAL	CODE	RESULT	QUAL	CODE	RESULT	QUAL	CODE
INORGANICS			1	207			130	· U	A	104	υ	1 · A
ALUMINUM	1370		<u> </u>	327	U	A	2.1	U	 ^	2.1	- Ū	+
ANTIMONY	2.1	U		2.1	U			- 0	 	2.6	U	+
ARSENIC	2.6	UJ	K	2.6	UJ	К	2.6		 	27.6		
BARIUM	174			28.1			39.3		+	0.20	U	
BERYLLIUM	0.20	U	ļ	0.20	<u> </u>		0.20	<u> </u>	 	0.20	U	, parker.
CADMIUM	0.33	U	A	0.60	U	A	0.45	U	A		<u> </u>	.,s,, A
CALCIUM	252000			165000			69500		<u> </u>	10100		1 1
CHROMIUM	2.4	U	A	1.0	U		1.0	U	 	1.0	<u>U</u>	
COBALT	1.8	U	A	1.7	U	Α	1.8	U	A	0.70	U	
COPPER	3.2	U	Α	7.5			1.3	U		1.3	U	
IRON	4890	J	1	416	J	l	7150	J		75.0	U	Α
LEAD	1.8	U		6.1	U	A	1.8	U		1.8	U	
MAGNESIUM	719000			516000			56600			2190		
	687			40.3	J	K	2670			1.8	· U	A
MANGANESE	0.10	UJ	D	0.10	UJ	D	0.10	UJ	D	0.10	UJ	D
MERCURY	2.9	U	A	3.2	U	Α	8.1	U	Α	1.9	U	A
NICKEL	349000		1	230000	J	I	23800	J	l l	2570	J	
POTASSIUM	3.4	Ü	-	3.4	U		3.4	U		3.4	U	
SELENIUM	1,1	UJ U	C	1.1	UJ	С	1.1	UJ	С	1.1	UJ	С
SILVER			+	3710000		1	431000	J	1	32300	J	1
SODIUM	5580000		A	4.1	U	 '	4.1	U		4.1	U	1
THALLIUM	4.5	U			U	A	0.70	Ü		1.3	U	A
VANADIUM	4.8	U	A	5.5		C	13.3	J	С	3.8	Ū	1
ZINC	27.0	J	C	36.9	J	1 6	13.3	J		10.0		

WATER DATA

Accutest, NJ

SDG: E62315

SAMPLE NUMBER: SAMPLE DATE: LABORATORY ID: QC_TYPE: % SOLIDS: UNITS:

FIELD DUPLICATE OF:

DRMO-6MW9S-GW-07 01/19/00 E62315-8 NORMAL 0.0 %

UG/L

GWFD-011900 01/19/00 E62315-7 NORMAL 0.0 % UG/L

DRMO-GMW9S-GW-07

11

100.0 %

11

Page

100.0 %

										ļ		
	RESULT	QUAL	CODE	RESULT	QUAL	CODE	RESULT	QUAL	CODE	RESULT	QUAL	CODE
INORGANICS						,				İ		
ALUMINUM	310	U	A	340	U	A			<u> </u>			
ANTIMONY	2.1	U		2.1	U							
ARSENIC	2.6	U		2.6	U						_	T
BARIUM	14.6			14.4								
BERYLLIUM	0.26	U	Α	0.36	U	A						
CADMIUM	0.54	U	A	0.61	U	Α						T
CALCIUM	1910		<u>.</u>	1910								T
CHROMIUM	1.0	U		1.0	U							1
COBALT	5.2	U	Α	5.4	U	A						
COPPER	3.0	U	Α	2.9	Ų	A					······································	1
IRON	15.4	U		18.9	U	Α						
LEAD	1.8	U		1.8	U							1
MAGNESIUM	552			551								· ·
MANGANESE	547			549								1
MERCURY	0.10	ΟJ	D	0.10	ΟJ	D						1
NICKEL	4.9	U	Α	4.9	U	A						1
POTASSIUM	714	J	ı	701	J	ı					***************************************	1
SELENIUM	3.4	U		3.4	U							1
SILVER	1.1	·UJ	С	1.1	UJ	С						1
SODIUM	3460	U	Α .	3510	J	- 1						
THALLIUM	4.1	U		4.1	U							
VANADIUM .	1.0	U	Α	1.1	U	A						1
ZINC	111			120				····				1

INTERNAL CORRESPONDENCE

TO:

M. MENGEL

DATE:

APRIL 6, 2000

FROM:

JENNIFER MALLE

COPIES:

DV FILE

SUBJECT:

INORGANIC DATA VALIDATION-TAL METALS

建设企业企业企业

CTO 267 -NSB NEW LONDON

SDG - E62512

SAMPLES:

1/Aqueous/

DRMO-6MW1S-GW-07

Overview

The sample set for CTO 267, NSB, New London, SDG E62512 consists of one (1) aqueous environmental sample.

The sample was analyzed for Target Analyte List (TAL) metals. The sample was collected by Tetra Tech NUS on January 21, 2000 and analyzed by Accutest Laboratories in accordance with Naval Facilities Engineering Service Center (NFESC) Navy Installation Restoration Laboratory Quality Assurance Guide, (February 1996). All metals were analyzed under CLP analytical method ILMO4.0.

The data was evaluated based on the following parameters:

- **Data Completeness**
- **Holding Times**
 - Calibration Verification
 - Laboratory Blank Analysis
 - ICP Interference Analysis
- Matrix Spike Recoveries
- **Laboratory Duplicates**
- Laboratory Control Sample Recoveries
 - ICP Serial Dilution
- Sample Quanitation
- **Detection Limits**
- All quality control criteria were met for this parameter.

M. MENGEL **APRIL 6, 2000** PAGE 2

Calibration Recoveries

Several Contract Required Detection Limit (CRDL) Percent Recoveries (%Rs) reported for zinc were greater than the 110% quality control limit. The positive result less than three times the CRDL value reported for zinc was qualified as estimated, "J".

Several Contract Required Detection Limit (CRDL) Percent Recoveries (%Rs) reported for arsenic, lead and vanadium were less than the 90% quality control limit. The nondetected results reported for arsenic, lead and vanadium were qualified as estimated, "UJ".

Several Contract Required Detection Limit (CRDL) Percent Recoveries (%Rs) reported for selenium were above and below the 90%-110% quality control limits. The nondetected result reported for selenium was qualified as estimated, "UJ".

Laboratory Blank Analyses

The following contaminants were detected in the laboratory method / preparation blanks at the following maximum concentrations:

Affected samples :	All	
·		Ma
<u>Analyte</u>		Co

ΛII

	Maximum	Action
Analyte	Concentration	Level (aqueous)
Aluminum	106.6 ug/L	533 ug/L
Beryllium	1.0 ug/L	5.0 ug/L
Cadmium	0.90 ug/L	4.5 ug/L
Calcium	97.4 ug/L	487 ug/L
Chromium	5.8 ug/L	29.0 ug/L
Cobalt	1.2 ug/L	6.0 ug/L
Iron ⁽¹⁾	53.32 ug/L	266.6 ug/L
Magnesium	82.1 ug/L	410.5 ug/L
Manganese	1.5 ug/L	7.5 ug/L
Nickel	2.7 ug/L	13.5 ug/L
Vanadium	1.2 ug/L	6.0 ug/L

⁽¹⁾ Maximum concentration present in an aqueous preparation blank

An action level of 5X the maximum concentration was used to evaluate the sample data for blank contamination. Sample aliquot and dilution factors were taken into consideration in evaluation for blank contamination. Positive results less than the action level for cobalt, manganese and nickel were qualified as nondetect, "U", due to laboratory blank contamination. No validation action was required for the remaining analytes as all of the results reported were either greater than the blank action level or previously qualified as nondetects by the laboratory.

MEMO TO: M. MENGEL DATE: APRIL 6, 2000

ICP Interference Check Sample Results

The interfering analyte magnesium was present in sample DRMW-6MW1S-GW-07 at a concentration which was comparable to the level of magnesium in the Interference Check Sample (ICS) solution. Several analytes namely arsenic, cadmium, copper, lead, manganese, nickel, potassium, selenium, vanadium and zinc were present in the ICS solution at concentrations which exceeded the Instrument Detection Limit (IDL). Interference affects exist for arsenic, selenium, vanadium and zinc in the affected sample. The positive result reported for zinc was qualified as estimated, "J". The nondetected results reported for arsenic, selenium and vanadium were qualified as estimated, "UJ".

The result reported for zinc was less than two times the Instrument Detection Limit (IDL) and therefore should be considered as an estimated value. The positive result reported for zinc was qualified as estimated, "J".

Notes

Several Contract Required Detection Limit (CRDL) Percent Recoveries (%Rs) reported for cadmium, chromium and thallium were greater than the 110% quality control limit. However, validation action was not required since results reported were nondetected and a positive bias did not affect the sample results.

Executive Summary

Laboratory Performance: Several laboratory contaminants were present in the laboratory/preparation blanks. Several analytes were qualified for calibration noncompliances.

Other Factors Affecting Data Quality: The interfering analyte magnesium was present in the one sample contained in this SDG. The result for zinc was less than 2x the IDL.

MEMO TO: DATE: M. MENGEL APRIL 6, 2000 PAGE 4

The data for these analyses were reviewed with reference to the "National Functional Guidelines for Inorganic Review", "EPA Region I Inorganic Data Validation Functional Guidelines", December 1996 and the NFESC document entitled "Navy Installation Restoration Laboratory Quality Assurance Guide " (NFESC 2/96).

The text of this report has been formulated to address only those problem areas affecting data quality.

"I attest that the data referenced herein were validated according to the agreed upon validation criteria as specified in the NFESC Guidelines and the Quality Assurance Project Plan (QAPP)."

Tetra Tech NUS

Jennifer Malle

Environmental Scientist

Zetra Tech NUS

Joseph A. Samchuck Quality Assurance Officer

Attachments:

- 1. Appendix A Qualified Analytical Results
- 2. Appendix B Results as reported by the Laboratory
- 3. Appendix C Region I Worksheets
- 4. Appendix D Support Documentation

APPENDIX A

Qualified Analytical Results

Qualifier Codes:

A = Lab Blank Contamination

B = Field Blank Contamination

C = Calibration (i.e., % RSDs, %Ds, ICVs, CCVs, RPDs, RRFs, etc.) Noncompliance

D = MS/MSD Noncompliance

E = LCS/LCSD Noncompliance

F = Lab Duplicate Imprecision

G = Field Duplicate Imprecision

H = Holding Time Exceedance

= ICP Serial Dilution Noncompliance

J = GFAA PDS - GFAA MSA's r < 0.995

K = ICP Interference - include ICSAB % R's

L = Instrument Calibration Range Exceedance

M = Sample Preservation

N = Internal Standard Noncompliance

O = Poor Instrument Performance (i.e., base-time drifting)

P = Uncertainty near detection limit (< 2 x IDL for inorganics and <CRQL for organics)

Q = Other problems (can encompass a number of issues)

R = Surrogates Recovery Noncompliance

S = Pesticide/PCB Resolution

T = % Breakdown Noncompliance for DDT and Endrin

U = Pest/PCB D% between columns for positive results

V = Non-linear calibrations, tuning r < 0.995 (correlation coefficient)

W = EMPC result

X = Signal to noise response drop

Y = % Solid content is less than 30%

WATER DATA Accutest, NJ SDG: E62512

SAMPLE NUMBER: SAMPLE DATE: LABORATORY ID: QC_TYPE: % SOLIDS:

UNITS:

FIELD DUPLICATE OF:

DRMO-6MW1S-GW-07 01/21/00

E62512-2 NORMAL 0.0 % UG/L

100.0 %

11

100.0 %

11

100.0 %

	RESULT	QUAL	CODE	RESULT	QUAL	CODE	RESULT	QUAL	CODE	RESULT	QUAL	CODE
INORGANICS						ı			1			I
ALUMINUM	72.5	U	<u> </u>				·		-			
ANTIMONY	2.1	U							 			+
ARSENIC	2.6	UJ	СК			 			 			
BARIUM	21.5		ļ							 		
BERYLLIUM	0.20	U	ļ	ļ		 				<u> </u>		+
CADMIUM	0.30	U		ļ		 				 		+
CALCIUM	117000								<u> </u>			+
CHROMIUM	1.0	U					ļ		-			+
COBALT	1.3	U	Α				ļ		 	<u> </u>		+
COPPER	1.3	U				_						+
IRON	552]		:-	ļ					+
LEAD	1.8	UJ	С			<u> </u>						+
MAGNESIUM	319000			ļ					+			+
MANGANESE	2.1	U	Α	ļ			ļ		 			
MERCURY	0.10	U					ļ		 			+
NICKEL	2.6	U	- A									+
POTASSIUM	147000			ļ <u>.</u>			<u> </u>		 	 		+
SELENIUM	3.4	UJ	CK	ļ			 			 		
SILVER	1.1	U	<u> </u>	<u> </u>		<u> </u>	ļ			 		
SODIUM	2460000			<u> </u>			ļ		+	 		
THALLIUM -	4.1	U		ļ						<u> </u>		
VANADIUM	0.70	UJ	СК	1			ļ			 		
ZINC	4.5	J	CKP	<u> </u>						<u> </u>		